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oping active disease. Any later imbalance 
of the immune system will promote micro­
bial reemergence and ultimately result in 
clinical disease. This chapter focuses on 
the immune mechanisms involved in pro­
tective immunity against tuberculosis, 
with the awareness that in most cases the 
immune response activated during infec­
tion with M. tuberculosis may be remark- 

ologic agent "of tuberculosis, Mycobacte- ably powerful yet insufficient.
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In his epoch-making description of the 
etiologic agent of tuberculosis in 1882, R. 
Koch noted the intracellular location of 
M. tuberculosis within giant cells (end­
stage-differentiated MP) in granulomatous 
lesions (Koch, 1882). In his endeavor to 
develop an active vaccination protocol for

- " ’ ’ t

after administration of glycerin extracts of 
M. tuberculosis culture supernatants, the 
lesions of tuberculous guinea pigs became 
heavily necrotized (Koch, 1890). In these 
necrotic reactions, many microorganisms 
died because of nutrient and oxygen defi­
ciencies. Although Koch had already 
noted that M. tuberculosis organisms can 
be disseminated from such neciotizing 
lesions to other tissue sites, he underrated

Acquired resistance against tuberculosis 
paradigmatically rests on cell-mediated 
immunity, with the major factors being 
mononuclear phagocytes (MP) and T lym­
phocytes. While the former cells act as 
the principal effectors, the latter ones 
serve as the predominant inducers of pro­
tection. At the same time, however, MP 
provide the preferred biotype for the eti- 

rium tuberculosis, and hence play a dual 
role in tuberculosis, promoting not only 
protection against the disease but also 
survival of the pathogen. Similarly, T 
cells not only are indispensable for pro­
tective immunity but also contribute to 
pathogenesis. A coordinated cross-talk 
between MP and T cells, therefore, is 
essential for optimum protection. Such 
coordination is best achieved in the gran­
ulomatous lesion, which provides the tis­
sue site for defense against tuberculosis. .
Even in the face of coordinated T-cell-MP treating tuberculosis, Koch jound 
interactions, full eradication of the patho­
gen is frequently not achieved, so that the 
individual remains infected without devel-
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1990a). TNF-a also appears to play a criti­
cal role in the control of BCG infection in 
vivo, although its direct effect on the an- 
timycobactcrial capacity of macrophages 
has not been addressed in this model. Nev­
ertheless, when TNF-a-specific monoclo­
nal antibodies were used to probe the sig­
nificance of this cytokine in defense against 
mycobacteria, deficient TNF-a resulted in 
poor granuloma formation and dissemi­
nated BCG infection in mice (Kindler el al., 
1989). The significance of TNF-a in granu­
loma formation has been demonstrated in 
other infectious disease models (Chensue et 
al., 1989; Amiri et al., 1992). More impor­
tantly, preliminary studies suggest that an- 
ti-TNF-a antibodies markedly exacerbate 
disease progression in murine experimental 
tuberculosis (Flynn et al., personal commu­
nication).

Other cytokines have been implicated in 
macrophage defense against M. tuberculo­
sis, although their roles are not as well 
established as those of IFN-7 and TNF-a. 
In vitro, interlcukin-4 (IL-4) and IL-6 have 
the ability to induce macrophage antimyco- 
bacterial activity (Kaufmann et al., 1989; 
Flesch and Kaufmann, 1990a, b) by mech­
anisms presently undefined. Infection of 
the human myelomonocytic cell line THP-1 
with M. tuberculosis enhances production 
of IL-6 (Friedland et al., 1993) compared to 
that in cells infected with Toxoplasma gon­
dii, an intracellular protozoan known to 
elicit little inflammatory response even in 
immunocompetent patients. In the murine 
system, BCG or its subcellular components 
are capable of inducing production of IL-6 
by splenocytes (Huygcn et al., 1991). The 
antimycobacterial effects of IL-4 and IL-6 
(Flesch and Kaufmann, 1990a, b) in the in 
vitro macrophage system are seen only 
when these cytokines are added to macro­
phage cultures after, but not before, the 
establishment of BCG infection. This phe­
nomenon sharply contrasts with the ability 
of IFN-'y to induce antimycobacterial activ­
ity in macrophages, which is markedly

blunted if it is given after initiation of infec­
tion (Flesch and Kaufmann, 1990a). The 
mechanism and the significance of this ob­
servation are currently obscure, but it illus­
trates well the complexity of the interaction 
between macrophages, cytokines, and the 
organisms as well as the limitations of ex­
isting in vitro systems in dissecting the 
likely complex cytokine network involved 
during tuberculous infection. Thus, it is 
known that THP-1 cells produce IL-8 in 
response to M. tuberculosis infection in 
vitro, but the role of this cytokine in host 
defense in tuberculosis is completely un­
known (Friedland et al., 1992, 1993). Nev­
ertheless, it has been postulated that IL-8 
plays a role in granuloma formation by 
virtue of its ability to act as a chemotactic 
agent for T cells (Larsen et al., 1989; Fried­
land et al., 1992). IL-1 (Kobayashi et al., 
1985; Dunn et al., 1988; Kasahara et al., 
1988), IL-2 (Mathew et al., 1990; Cheever 
et al., 1992), IL-4 (Mclnnes and Rennick, 
1988; Chensue et al., 1992), and IFN-y 
(Squires et al., 1989; Chensue et al., 1992) 
may similarly contribute to resistance 
against M. tuberculosis, since these cyto­
kines have been implicated in granuloma­
tous reactions in various in vitro systems, 
including a murine schistosomiasis model. 
Recently, IL-10 (Bermudez and Champsi, 
1993) and transforming growth factor betal 
(TGF-pi) (Denis and Ghadirian, 1991; Ber­
mudez, 1993) have been shown to be asso­
ciated with diminution of macrophage an­
timycobacterial effect in vitro and with 
disease exacerbation in mice infected with 
M. avium. In contrast, preliminary studies 
(Flynn and Bloom, personal communi­
cation) indicate that administration of re­
combinant IL-12, a recently characterized 
heterodimeric glycoprotein produced by 
various immune cells including macro­
phages (D'Andrea et al., 1992; Schoenhaut 
et al., 1992; Gazzinelli et al., 1993), may 
confer resistance to tuberculosis in mice. 
IL-12 has recently been shown to play an 
important role in resistance to Leishmania
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phages. While it is clear that IFN-7 has the €

o

romolecules (reviewed in de Duve and Wat- 
Bainton and Kornfeld 

To provide optimal conditions for 
the functioning of these degradative en­
zymes, the intralysosomal milieu is main-

antimycobacterial effector
I UNCTIONS OF MACROPHAGES: HOW 

does m. tuberculosis survive?
The mononuclear phagocyte constitutes a 

potent antimicrobial component of cell-me­
diated immunity. The precise mechanisms 
bV which these cells mediate killing or 
inhibition of bacterial pathogens are, how­
ever, not clearly understood. Nonetheless 
m this section, some of the best-char­
acterized antimicrobial effector functions 
of macrophages—phagosome-lysosome fu­
sion, generation of ROI by the oxidative 
burst, and production of reactive nitrogen 
intermediates (RN1) via the L-arginine-de- 
pendent cytotoxic pathway—will be dis­
cussed in the context of tuberculous infec­
tion together with the possible evasion 
mechanisms employed by the tubercle ba­
cillus to escape killing by activated macro­
phages (Fig. 1).

^ajor, T. gondii, and Listeria monocytoge­
nes (Gazzinclli ct al., 1993; Heinzel et al 
1993; Locksley, 1993; Tripp et al., 1993)' 
I he events triggered by IL-12 help identify 
natural killer (NK) cells as a critical cellular 
component in defense against M. tubercu­
losis By virtue of their ability to produce 

1 .’Ln response to ,L-12 (Kobayashi et
989; Wolf et al., 1991), NK cells can 

rapidly activate macrophages to express 
microbicidal functions during the early 

nommmune” phase of tuberculous infec­
tion, before the expansion and differentia­
tion ol specific T lymphocytes. As cyto­
kines are being examined in experimental 
mycobacterial infection, it is becoming 
clear that these molecules interact dynami­
cally to form a highly coordinated network 
that is configured by both host- and patho­
gen-specific factors, which together influ­
ence disease outcome and progression.

Compared to the murine system, much 
ess is known about the activation of an- 

timycobacterial activity in human macro­

capability to induce significant antimyco- 
bactenal activity in murine macrophages, 
its role m the human system is unsettled.’ 
Thus, reports of the effect of IFN-7-treated 
human macrophages on the replication of 
M. tuberculosis ranges from being inhibi­
tory (Rook et al., 1986) to enhancing (Dou- 
vas et al., 1985). This inconsistency had 
cast considerable doubts on the antimyco- 
bactenal capability of human mononuclear 
phagocytes until the demonstration that 
1,25-dihydroxy vitamin D3 |1,25-(OH)1DJ, 
alone or in combination with IFN--/and 
TNF-ot, was able to activate macrophages 
to inhibit and/or kill M. tuberculosis in the 
human system (Crowlc et al., 1987; Rook, 
1988; Denis, 1991b). Interestingly, IFN-7 
stimulates human (Adams and Gacad, 1985- 
Koetfler et al., 1985; Reichel et al., 1987) 
but not murine (Rook, J----
to produce 1,25-(OH)2D3. probably via 
inducuon of 25(OH)D3-la.hydroxylaSe 
the enzyme that converts 25(OH)D, to the

1,25(OH)2D3 to affect antimycobacterial ac 
tivity in the murine system. This difference 
m 1,25(OH)2D3 metabolism between mu­
rine and human macrophages should serve 
as a reminder that species variations exist 
and a caution against the occasional readi­
ness with which cross-species extrapola­
tions of experimental results are made The 
value of existing in vitro and in vivo murine 
models in understanding tuberculosis must 
however, not be understated.

Phagosome-Lysosome Fusion
The lysosome is a highly complex or­

ganelle containing numerous enzymes 
within its own limiting membrane that are 
capable of degrading a whole range of mac-
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tained at a relatively acidic state (pH ~5) by 
an ATP-dependent proton pump (Ohkuma 
and Poole, 1978; Ohkuma el al., 1982). It is 
generally accepted that certain microorgan­
isms, sequestered within the phagosome 
upon ingestion by phagocytic cells includ­
ing macrophages, are subject to degrada­
tion by the various lysosomal digestive en­
zymes transferred into this subceliular 
compartment as a result of phagolysosomal 
fusion (Cohn, 1963). This fusion process, a 
highly regulated event, most likely consti­
tutes a significant antimicrobial mechanism 
of phagocytes. Examination of the interac­
tion between isolopically labeled bacteria 
and macrophages, using the generation of 
acid-soluble radioactive materials as an in­
dicator of degradation, suggests that certain 
organisms are degraded extensively within
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Figure 1. Antituberculous macrophage activities and 
evasion mechanisms. Accumulating evidence suggests 
that M. tuberculosis enters macrophages via specific 
binding to cell surface molecules of phagocytes. It has 
been reported that (he tubercle bacillus can bind 
directly to the mannoase receptor via the cell wall- 
associated. mannosylated glycolipid LAM (1) or indi­
rectly via complement receptors of the integrin family 
(CR1, CR3) or Fc receptors (2). Phagocytosis (3), 
triggered by engaging certain cell surface molecules 
such as the Fc receptor, stimulates the production of 
RO1 via activation of the oxidative burst (4). Experi­
mental data indicate that M. tuberculosis can interfere 
with the toxic effect of RO1 by various mechanisms. 
First, various mycobacterial compounds including gly­
colipids (GL). sulfatides (ST), and LAM can downreg- 
ulatc the oxidative cytotoxic mechanism (5; see text 
for details). Second, uptake via CR1 bypasses activa­
tion of the respiratory burst. Cytokine-activated mac­
rophages produce RNI that, at least in the mouse 
system, mediate potent antimycobacterial activity (6). 
The acidic condition of the phagolysosomal vacuole 
can be conducive to the toxic effect of RNI (7). 
However, NH/ production by M. tuberculosis may 
attenuate the potency of the L-argininc-dependent 
antimycobacterial mechanism and that of lysosomal 
enzymes (8), which operate best at an acidic pH. In 
addition, mycobacterial products such as sulfatides 
and NH/ may interfere with phagolysosomal fusion 
(9). Finally, the tubercle bacillus may evade the highly 
toxic environment by escaping into the cytoplasm via 
the production of hemolysin (10).

2 h after having been phagocytized (Cohn, 
1963). Also, electron microscopic studies 
indicate that the cell wall of Bacillus subtilis 
is degraded extensively within 30 min after 
phagocytosis by polymorphonuclear leuko­
cytes (Cohn, 1963). How, then, does M. 
tuberculosis survive the hostile environ­
ment of phagolysosomes?

M. tuberculosis has the ability to produce 
ammonia in abundance (Gordon ct al., 
1980). This volatile weak base accumulates 
in M. tuberculosis culture filtrates in con­
centrations of up to 20 mM and is thought to 
be responsible for the inhibitory effect of 
culture supernatants of virulent mycobac­
teria on phagolysosome fusion (Gordon ct 
al., 1980). In addition, ammonium chloride 
(NH4CI) has been shown to affect the sal­
tatory movement of lysosomes (D'Arcy
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Ir , , - rhodamine, and
sulforhodamine) as alternative lysosomal 
markers (Goren et al., 1987a, b). Finally, it 
IS likely (hat virulent tubercle bacilli like 
certain intracellular pathogens, including

a"d shi8cnac (Sansonetti 
et al., 1986), evade killing by escaping from 
phagocytic vacuoles into the cytoplasm (for 
a review, see Falkow et al. [1992]). Hemo­
lytic activities capable of lysing vacuolar 
membranes are thought to be the common 
virulent determinant that enables success­
ful parasitization of the cytoplasm (Falkow 
et al., 1992). Indeed, the translocation of 
M. tuberculosis from within phagocytic 
vacuoles into the cytoplasmic compartment 
has been reported (Myrvik et al 1984- 
McDonough et al., 1993). These observa­
tions are reinforced by the presence of a 
hemolytic activity in the tubercle bacillus 
King et al., 1993). Also, the cytoplasmic 

location made possible by this potential 
evasion mechanism could, in theory, facil­
itate the routing of mycobacterial compo­
nents into the major histocompatibility 
±S„V (.^HC 1) !’athway of presen 
, in part the
importance of MHC I molecules and CD8 + 
1 cells in defense against M. tuberculosis 
(Kaufmann, 1988; Flynn et al., 1992).

Hart et al., 1983) and to alkalinize the 
intralysosomal compartment (D’Arcy Hart 
et al., 1983). Thus, by virtue of its ability to 
produce a significant amount of ammonia, 
the tubercle bacillus can potentially evade 
the toxic environment within the lysosomal 
vacuole by (i) inhibiting phagosome-lyso­
some fusion and (ii) diminishing the po­
tency of the intralysosomal enzymes via 
alkalmization. This latter attribute of rais­
ing intralysosomal pH might also be protec­
tive against the RNI cytotoxic mechanism 
of macrophages (see below).

Another mycobacterial i
. * UiUULIH
^aVe.lhe abllity t0 inhibit phagolysoso-

15 ‘he SU'fatides (Goren « al., 
. 9Z.6b’’ dtr,vatives of multiacylated treha- 

. a lysosomotropic polyan- 
■ •■‘/Cw8lyCOhpid Produced by M. tuberculo-

1976a). Because of the ability 
compounds to entrap com- 

-------- 3 employed 
study phagolysosome fusion, artifactual 

process can occur and 
io«7 .---------- controversy (Goren et
iy«/a, b). These entrapment phenom- 
could be secondary to the formation of 

sluggishly moving hydrocol- 
I mark­

cationic

haps be addressed 
definitively by direct i 
labeling of vacuolar  
mg intracellular M. tuberculosis with 
bodies specific t 
teins (Joiner et al., ] 
"trap-resistant” ionic i._ 
(lucifer yellow, lissamine

as alternative lysosomal
• ... ’ —J Hid

is hkely that virulent tubercle bacilli

product thought rickettsiae (Winkler,

the sulfatides (Goren et al

lose 2-sulfate, 
ionic

(Middlebrook et al., 1959; Goren eta?
1976a). Because of the ability of certain 
polyanionic
moniy used lysosomal markers 
to •' ' •
"inhibition” of this 
has spawned much 
al., 
ena 
gelatinous, •
loids that physically retain lysosomal 
ers or to ionic interaction with 
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polyanionic nature of these glycolipids 
poses questions concerning their ability to 
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appears to be warranted. Regardless of the 
chemical components of the tubercle bacil­
lus that contribute to the inhibition of 
Phagolysosomal fusion, this phenomenon The Respiratory Burst
controversy notwithstanding) has been ex- That ROI nlav « • n 
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oxidative burst (Sbarra and Karnovsky, 
1959; Iyer et al., 1961; Klebanoff, 1980). 
The significance of these toxic oxygen spe­
cies in defense against M. tuberculosis, 
however, remains controversial. Since the 
report that H2O2 produced by lymphokine- 
activated murine macrophages kills M. mi­
croti (Walker and Lowrie, 1981), much ef­
fort has been focused on testing the role of 
the oxygen radical-dependent killing mech­
anism in defense against M. tuberculosis. 
Such effort, however, provided evidence 
indicating that oxygen radicals may not be 
sufficient to inhibit and/or kill M. tubercu­
losis (Flesch and Kaufmann, 1987, 1988; 
Chan et al., 1992). The validity of these 
findings has been reinforced by the demon­
stration of evasion mechanisms employed 
by the tubercle bacillus to elude the toxic 
effect of ROI. Of these mechanisms, those 
that are mediated by mycobacterial compo­
nents lipoarabinomannan (LAM) and phe­
nolicglycolipid I (PGL-1) are among the 
best studied and characterized (for reviews, 
see Brennan [1989] and Brennan et al. 
[1990]).

LAM, a major cell wall-associated, phos­
phatidylinositol-anchored complex lipo­
polysaccharide, is produced by M. tubercu­
losis in large amounts (15 mg/g of bacteria) 
(Hunter et al., 1986; Hunter and Brennan, 
1991). Immunogold staining has demon­
strated that LAM exists in a capsular 
sheath encasing M. tuberculosis (Hunter 
and Brennan, 1991). This strategic location 
places LAM at the frontline of attacks 
directed by the various antimicrobial mech­
anisms of macrophages. It has now been 
shown that LAM can incapacitate the oxy­
gen radical-dependent antimicrobial mech­
anism at at least two levels: (i) studies using 
electron spin resonance spectroscopy and 
spin-trapping have shown that LAM is an 
effective ROI scavenger (Chan et al., 1991); 
and (ii) LAM can downregulatc the oxida­
tive burst by inhibiting protein kinase C 
(Chan et al., 1991), an enzyme that plays an 
important role in activation of the oxidative

burst in phagocytic cells (Gennaro et al., 
1985; Pontyremoli et al., 1986; Wilson et 
al., 1986; Gavioli et al., 1987). In addition, 
since IFN-7 is a major factor for macro­
phage activation (Hamilton et al., 1984; 
Hamilton and Adams, 1987; Fan et al., 
1988) and has the ability to enhance ROI 
production by phagocytic cells, it is possi­
ble that LAM, by virtue of its ability to 
inhibit transcriptional activation of IFN-7- 
inducible genes (Chan et al., 1991), is able 
to block the expression of an as yet uniden­
tified factor(s) inducible by this cytokine 
that is required for the oxidative burst. 
These results are in keeping with the find­
ings that mouse peritoneal macrophages 
treated with LAM or infected with M. lep­
rae (a LAM-producing pathogenic myco­
bacterium) are not responsive to IFN-7 
activation as assessed by microbicidal and 
tumoricidal activities, O2- production, and 
surface la antigen expression (Sibley et al., 
1988; Sibley and Krahenbuhl, 1988) and 
may partially explain the inability of IFN- 
7-stimulated macrophages from both hu­
mans and mice to effectively kill M. tuber­
culosis in vitro (Rook et al., 1986; Flesch 
and Kaufmann, 1987).

Other mycobacterial components that in­
terfere with the oxygen radical-dependent 
antimicrobial mechanism of macrophages 
arc PGL-I and the sulfatides. PGL-I is an 
oligoglycosylphenolic phthiocerol diester 
with its species-specific trisaccharide moi­
ety glycosidically linked to a phenyl group 
that in turn is attached to the branched 
glycolic chain, phthiocerol; two hydroxyl 
functions of the phthiocerol are estcrificd 
by mcthyl-branched fatty acids (mycocero- 
sates) (Hunter and Brennan, 1981; Hunter 
et al., 1982). Although universally distrib­
uted among M. leprae, the expression of 
PGL-I in the various strains of M. tubercu­
losis is much restricted (Daffe et al., 1987; 
Brennan, 1989; Brennan et al., 1990). In 
contrast, the sulfatides, derivatives of mul­
tiacylated trehalose 2-sulfate (Middlebrook 
et al., 1959; Goren et al., 1976a), are widely
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the tubercle bacillus does not equal disease 
the host must be equally sophisticated I, 
evolvmg effective defensive strategic, 
against this formidable invader. It follows 
then that there must exist antimicrobial 
mechanisms to which the bacillus suc­
cumbs.

Reactive Nitrogen Oxides

The L-arginine-dependent cytotoxic 
pathway of activated macrophages consti­
tutes an important antimicrobial mecha­
nism against intracellular parasites (for re 
views, see Nathan and Hibbs (19911 I few 
and Cox [1991], and Nathan [1992]). The 
cytotoxic effect of this pathway is mediated 
through nitric oxide (NO) and related RN1 
generated from the substrate L-arginine via 
the action of the inducible form of the en- 
Zy?CunuuC °Xide synthase («NOS) (Nathan 
and Hibbs, 1991; Nathan, 1992). Recent 
studies have demonstrated an association 
between the antimycobacterial effect of cy­
tokine-activated murine macrophages and 
the activation of the L-arginine-dependent 
cytotoxic pathway (Denis, 1991b- Flesch 
and Kaufmann, 1991; Chan et al 1992) 
thus the capability of macrophages acti- 
va cd by IFN-7 and Escherichia coli lipo­
polysaccharide or TNF-a to kill and/or 
inhibit the virulent Erdman strain of M 
tuberculosis correlates well with RNI pro- 
ouclion. and nitrogen oxides generated by 
acid'fication of nitrite are also mycobactc- 
ncidal Chan et al., 1992). Deletion analy­
ses of the 5 flanking promoter sequence of 
murine iNOS indicate that IFN-y alone is 
msufhcient for transcriptional activation of

- ' ,e el aI-’ 1993). The synergistic
effect of IFN-y and TNF-a in inducing 
mactophage antimycobacterial function via 
<NI production underscores the impor­

tance of these cytokines in defense against 
M. tuberculosis. Indeed, IFN-y and IFN-y 
receptor ‘-knockout” mice that arc defi­
cient in mounting an RNI response to infec­
tion with the tubercle bacillus experience a

expressed among different strains of M 
tuberculosis (Middlebrook et al 1959’ 
Goren et al., 1974, 1976a). Because of its 
restricted distribution among tuberculous 
isolates, the significance of PGL-1 in the 
pathogenesis of tuberculosis remains to be 
determined. Nonetheless, both PGL-1 and 
the sulfatides have the capacity to down- 
•egulate ROI production in in vitro macro- 
offTo^'p k SyStemS (Nci" and K,eba"-

1 Ct aL’ 1988; Vachu,a * a'- 
1989; Brozna et al., 1991), and PGL-I di­
rectly scavenges oxygen radicals in a cell- 
free system (Chan et al., 1989). Another 

evade the toxicity of ROI is to avoid bind­
ing to macrophage cell surface compo­
nents such as Fc receptors, that would 
piovoke an oxidative burst. Instead, the 
tubercle bacillus parasitizes MP via com­
plement receptors CR1 and CR3. molecules 
w.h .'nle!rin family whose interaction 
WIth n igand does not trigger ROI produc- 
tion (Wright and Silverstein, 1983), in rest­
ing macrophages (Schlesinger et al., 1990) 
I hus, as in other parasites (for reviews, see 
sbeig [1991] and Falkow et al. [1992]) 

1a'|ClU1wm Bo^de'ella P^ssis (Reiman et 
0), Histoplasma capsulatum (Bui- 

lock and Wright, 1987), Legionella pneu- 
mophila (Payne and Horwitz, 1987), and 
19R7/Z/p/,Z/?/nSPP’ (M°SSer and Edclson, 
987, Russell and Wright, 1988; Talamas- 

Rohana et al., 1990), exploitation of inte- 
gnn receptors may be a common scheme of 
lnvasion among pathogenic mycobacteria 

Although these in vitro data provide sub- 
mlpl,V?tbVldenCe tO SU8gest Path°genetic 
roles of the various mycobacterial glycolip­
ids, their in vivo significance is p- 
undefmed and awaits rigorous genetic anal­
yses. Nonetheless, it is undeniable that 
Mycobacterium spp. are extremely well 
adapted to the hostile environment of 
Phagocytic cells, their deftness reflected by 
the alarming morbidity and mortality 
caused by tuberculosis worldwide (Murray 
et al., 1990). However, since infection with
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I

There is little doubt that M. tuberculosis 
has the ability to establish infection in and

DOES M. TUBERCULOSIS INVADE 
CELLS OTHER THAN PROFESSIONAL 

PHAGOCYTES?

I
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icmoglobin 
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replicate inside of a wide variety of mam­
malian cells in vitro (Sheppard, 1958). Yet 
in infected tissues, the tubercle bacillus is 
to be found only in polymorphonuclear 
leukocytes and MP (Filley and Rook, 1991). 
The findings by Filley and Rook that endo­
thelial cells and fibroblasts infected by M. 
tuberculosis exhibit increased sensitivity to 
the cytolytic effect of TNF have led to the 
hypothesis that this cytokine contributes 
significantly to the immunopathology of tu­
berculosis (Filley and Rook, 1991). The 
enhanced susceptibility of nonphagocytic 
cells to TNF upon mycobacterial infection 
may also partially explain the difficulties 
encountered in identifying such target cells 
in vivo. It is also possible that these non­
phagocytic cells serve as a reservoir for 
bacterial multiplication and thus aid in dis­
ease dissemination upon lysis by TNF. Re­
search in these areas is just beginning to 
draw attention and is likely to help provide 
insight into the pathogenic strategies of M. 
tuberculosis. Finally, unlike the processes 
of other pathogenic bacteria such as the 
enteric shigellae and salmonellae and the 
gram-positive listeriae (for reviews sec Is- 
berg 11991] and Falkow et al. [1992]), the 
processes of adhesion and invasion by 
which M. tuberculosis enters host cells are 
just beginning to be understood. M. tuber­
culosis gains entry into MP via cell surface 
molecules, including the integrin family 
CR1 and CR3 complement receptors (Schles­
inger et al., 1990) and the mannose receptor 
(Schlesinger, 1993). Recently, M. avium 
has been shown to enter macrophages via 
avp3, another molecule of the integrin fam­
ily (Rao et al., 1993). Parasitization of 
phagocytes via the CR1 and CR3 recep­
tors by various pathogens avoids triggering 
the oxidative burst (Wright and Silverstein, 
1983). Whether the same advantage is 
gained by engaging the mannose receptor 
or the avp3 integrin is presently unclear. 
Since the cytoplasmic domain of p subunit 
of integrin is coupled to the cytoskeleton 
(Albclda and Buck, 1990), it is possible that

report that the 
to RNI varies 
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globin, a direct connection of iron and infec­
tion is made (Eaton et al., 1982). In human 
diseases, the mortality rate of Vibrio vulnifi­
cus is markedly increased in patients suf­
fering from iron overload as a result of 
conditions such as hemochromatosis and 
alcoholism (Brennt et al., 1991; Bullen et al., 
1991). These experimental data thus suggest 
a possible role of siderophores in bacterial 
virulence.

Mycobactins, a group of iron-chelating 
growth factors of mycobacteria, have been 
considered a possible virulence factor of M. 
tuberculosis (Snow, 1970). These hydroxa- 
mate derivatives chelate ferric ions with a 
stability constant exceeding IO30 (Snow, 
1970). Thus, mycobactins compete favor­
ably for chelating Fe3+ with human ferritin 
and transferrin, the major iron storage and 
iron-transporting proteins, respectively. 
The significance of these mycobacterial 
iron-binding agents in the pathogenesis of 
tuberculosis, however, remains to be estab­
lished. Recently, the L-arginine-NO path­
way has been reported to participate in 
posttranscriptional regulation of the ex­
pression of ferritin, transferrin receptor, 
and 5-aminolevulinate synthase (a rate-lim­
iting enzyme in erythroid heme synthesis) 
in macrophages (Drapier et al., 1993; Weiss 
et al., 1993). It is fascinating that the very 
same pathway that produces potent antimy- 
cobacterial activities in macrophages par­
ticipates also in the regulation of the metab­
olism of iron, whose availability is essential 
to the optimum growth of M. tuberculosis. 
Dissecting this likely complex tangle may 
uncover additional roles for the NO path­
way in tuberculous infection and shed light 
on the significance of iron in the pathoge­
nicity of M. tuberculosis.
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sented by nonconventional MHC class lb 
molecules (Kaufmann et al., 1988; Kur- 
lander et al., 1992; Pamer et al., 1992). The 
N-fMet sequence probably serves as a se­
cretion signal in prokaryotic cells. In mam­
mals, the 7V-fMet sequence is present only 
in proteins encoded by the mitochondrial 
genome (probably of prokaryotic origin). 
Furthermore, nonconventional MHC class 
lb gene products are highly conserved and 
vary in only few mouse strains. Thus, it 
appears that a subset of bacterium-specific 
CD8 T cells is focused on (i) conserved 
bacterial peptides and (ii) nonpolymorphic 
presentation elements. If these observa­
tions can be generalized to human tubercu­
losis, important consequences for peptide 
vaccination against bacteria with few pep­
tides and independent of human lympho­
cyte antigen polymorphism can be envis­
aged.

A contribution of 7/8 T cells to protection 
is suggested by indirect evidence. They 
have been identified in reversal reactions of 
leprosy patients and in tuberculous lymph­
adenitis lesions (Falini et al., 1989; Modlin 
et al., 1989). No evidence for increased 7/8 
T cell numbers, however, has been ob­
served in lymph node granulomas of tuber­
culosis patients (Tazi et al., 1991). In mice, 
7/8 T cells accumulate early at the site of 
BCG replication, in draining lymph nodes 
after immunization with complete Freund’s 
adjuvant, and in the lung after aerosol im­
munization with mycobacterial compo­
nents (Augustin et al., 1989; Janis et al., 
1989; Inoue et al., 1991). Furthermore, the 
progressive BCG infection in scid mice 
compared to nulnu mice and mice depleted 
of CD4 and CDS T cells has been taken as 
evidence for a role of 7/8 T cells (Izzo and 
North, 1992). Direct proof, however, has to 
await experiments with mutant mice devoid 
of 7/8 T cells. The 7/8 T cells from healthy 
individuals proliferate vigorously in re­
sponse to mycobacterial components (Ka- 
belitz et al., 1990; Munk et al., 1990). 
Although preferential 7/8-T-cell expansion
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Products. Myco- 
r lymphocytes 

stently in experi- 
losis (Kaufmann 
off et al., 1988; 
thermore, CD4 
monoclonal an- 
nental infection 

!osis and BCG 
<ini et al., 1987). 
ction against M. 
ely depends on 
-ells (Orme and 
Consistent with 

with a defi-
I gene that are 
e CD4 T cells 
fmann, unpub- 
losis (Flynn et 
) infections. In 
ents strongly 
2D4 T cells in 
is. Consistent 
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functionally active CD8 T cells. These mice 
die rapidly from M. tuberculosis but not 
from BCG infection. Impressive as these 
studies are, it should be kept in mind that 
p2m not only serves to stabilize MHC class 
I surface expression but may also perform 
other functions that could influence sur­
vival of M. tuberculosis in p2m-deficient 
mice. Furthermore, mycobacterium-spe­
cific CD8 T cells have been isolated from 
M. tuberculosis- and BCG-immune mice 
(DeLibero et al., 1988). In contrast, such 
mycobacterium-specific CD8 T cells were 
rarely identified in patients suffering from 
human tuberculosis (Rees cl al., 1988). CDS 
T-cell lines derived from M. tuberculosis- 
and BCG-immune mice arc MHC class I 
restricted, thus raising the question of how 
M. tuberculosis and BCG proteins gain 
access to the MHC class I processing path­
way (DeLibero et al., 1988). Although it is 
generally assumed that M. tuberculosis re­
mains in the cndosomal compartment, clear 
evidence for escape of M. tuberculosis 
from phagolysosomes into the cytoplasm 
has been presented (Leake et al., 1984; 
McDonough et al., 1993). Microbes resid­
ing in the cytoplasm could then produce 
proteins that contact MHC class I mole­
cules, as has been clearly shown for Liste­
ria monocytogenes. Alternatively, it can be 
assumed that during persistent replication 
within the phagosome, mycobacterial pro­
teins or peptides are translocated into the 
cytoplasm, where they contact the MHC 
class I processing machinery. Recent evi­
dence indicates that MHC class I process­
ing can occur independently of microbial 
egression into the cytoplasm (Pfeifer et al., 
1993).

Besides conventional MHC class I-rc- 
strictcd CDS T cells, T cells that arc appar­
ently MHC class I nonrestricted have been 
described (DeLibero et al., 1988). Similar T 
cells have been identified in the listeriosis 
system, where these T lymphocytes are 
focused on peptides containing the N- 
formylmethionine (A-fMet) sequence pre-
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T-Cell Antigens

At least two characteristics of M. tuber­
culosis and BCG influence the type of anti-

J

*

by mycobacteria is caused to a large degree 
by low-molecular-weight nonproteinaceous 
components that act in a superantigen-like 
fashion, 7/8 I cells also appear to be stim­
ulated by M. tuberculosis antigens (Munk 
et al., 1990; Pfeffer et al., 1990). Thus far, 
the kind of antigens and presentation mol­
ecules required for 7/8-T-cell stimulation 
remain virtually unknown. Evidence from 
other systems indicates that the relevant 
peptides are presented by nonconventional 
MHC molecules (Pamer et al., 1993). Per­
haps the MHC class lb molecules involved i 
in CDS T-cell stimulation also participate in 
7/8-T-cell stimulation.

cells appear sequentially in the following 
order: PNG. NK cells, 7/8 T cells, a/B T 
cells.

Evidence has been presented elsewhere 
that T-cell lysis of BCG-infected macro­
phages causes bacterial growth inhibition in 
vitro (DeLibero et al., 1988). Perhaps target 
cell lysis promotes discharge of toxic mac­
rophage products that inhibit mycobacterial 
growth. This in vitro observation may be 
taken as evidence for a direct protective 
effect afforded by cytolytic T cells. More 
importantly, a coordinated interplay be­
tween macrophage activation by IFN-7 
(probably in conjunction with additional 
mediators) and target cell lysis appears to 
be required for optimum protection 
(Kaufmann, 1988). M. tuberculosis is ex­
tremely resistant to macrophage killing. 
The persistence of M. tuberculosis in 
healthy individuals for years without caus­
ing disease indicates that the immune sys­
tem generally fails to stcrilely eradicate this 
pathogen and must rely on mycobacterial 
containment and growth inhibition. Not 
only prior to but also after IFN-7 stimula­
tion, macrophages are largely abused as 
habitat. Lysis of such macrophages pro­
motes bacillary release from a shelter. Pro-

—.3 are taken up 
by more efficient phagocytes soon after 
their liberation, this mechanism should im­
prove host defense against tuberculosis. 
Such an interplay between lysis and activa­
tion of MP would best be controlled in 
productive granulomas (see below). At the 
same time, target cell lysis causes tissue

------- 3, and, in the 
absence of phagocytosis, promotes micro­
bial dissemination. Lysis of infected MP,

• is a double-edged sword that, 
depending on the general situation, has 
beneficial or a detrimental outcome.

T-Cell Functions

Various in vitro studies of the human and 
mui inc systems show that mycobacterium- 
reactive CD4 T cells are potent IFN-7 pro­
ducers (Emmrich et al., 1986; Kaufmann 
and Flesch, 1986). IFN-7 is also produced 
by murine CDS T cells with mycobacterial 
specificity (DeLibero et al., 1988). As de­
scribed above, this cytokine is the principal 
mediator of antituberculous resistance. 
Mycobacterium-reactive CD4 T cells and 
CD.8 7 ccl,s also exPress specific cytolytic 
activities; i.e., they lyse macrophages vided that the microorganisms 
primed with mycobacterial antigens or in- ' 
fected with BCG or M. tuberculosis (De­
Libero et al., 1988; Ottenhoff et al., 1988). 
It appears that these two functions not only 
are demonstrable in vitro but also contrib­
ute to protection in vivo. Besides the well- 
characterized a/p T cells, other cells also  VV11 
produce IFN-7 and express cytolytic activ- damage, affect^organ functions 
ities, suggesting their participation in acqui­
sition of resistance. In particular, both NK  
cells and 7/8 T cells produce IFN-7 and lyse therefore, i 
mycobacterium-pulsed target cells (Munk 
et al., 1990; Bancroft et al., 1991; Follows 
et al., 1992; Molloy et al., 1993). In ad­
dition, polymorphonuclear granulocytes 
(PNG) produce highly proteolytic enzymes 
causing tissue liquefaction (Weiss, 1989). 
At the site of M. tuberculosis growth, these
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Figure 2. Relationship between intracellular persis­
tence of M. tuberculosis, antigen type, and 1-cell 
subset activation. (1) M. tuberculosis replicating in the 
phagosome secretes proteins that are degraded into 
peptides and then translocated to the cell surface by 
MHC class 11 molecules. (2) MHC class 1 molecules 
capture M. tuberculosis peptides derived from se­
creted proteins in the cytoplasm. Either the proteins or 
peptides had been translocated from the endosomal 
into the cytoplasmic compartment, or they were se­
creted into the cytoplasm by M. tuberculosis after its 
evasion of the phagosome. Later, M. tuberculosis is 
killed and degraded, thus giving rise to somatic pro­
teins. (3) Peptides derived from M. tuberculosis killed 
in the phagosome contact MHC class II molecules. (4) 
Peptides from somatic proteins present in the cyto­
plasm are charged to MHC class 1 molecules. (5) 
Neither the source of peptides nor the presentation 
molecules involved in 7/8 T-cell stimulation are fully 
understood. This sequence of events leads to a first 
wave of T cells with specificity for secreted proteins 
followed by a second wave of T cells with specificity 
for somatic proteins. Ag. antigen.

cines requires use of appropriate adjuvants 
or viable carriers capable of targeting both 
the MHC class I and the MHC class II 
pathway. As long as MP fail to kill signifi­
cant numbers of intracellular M. tuberculo­
sis, secreted proteins and metabolically 
produced peptides are the main, if not the 
sole, source of antigens. Later, when M. 
tuberculosis and M. bovis die in the acti­
vated macrophage, somatic proteins be­
come a major source of T-cell antigens. The 
less metabolically active bacteria are, the 
lower the relative proportion of secreted 
protein antigens will be. Dormant tubercle 
bacilli without significant metabolic activity 
but resisting macrophage killing will be an 
ineffectual source of any antigen. Both fea­
tures may be relevant to the low effective­
ness of the only vaccine against tuberculo­
sis available, BCG. First, BCG seems to 
primarily activate CD4 T cells (Pedrazzini 
et al., 1987). While this seems to be suffi­
cient for protection against BCG, it appears 
to be insufficient for effective vaccination 
against tuberculosis. Perhaps the shorter 
intracellular survival of BCG together with 
a deficiency in cytolysins restricts access of 
BCG-derived proteins to the MHC class I 
pathway. Second, owing to the shorter sur­
vival time of BCG, somatic antigens will 
predominate early after infection. Early 
recognition of M. tuberculosis-infected 
macrophages, however, primarily depends 
on T cells that recognize secreted proteins. 
Thus, the preponderance of CD4 T cells 
and somatic antigens may explain, at least 
in part, the insufficient protection against 
M. tuberculosis afforded by BCG vaccina­
tion.

In tuberculosis, the port of entry as well 
as the major organ of disease is the lung. 
After being inhaled, the pathogen is en­
gulfed by alveolar macrophages that appear 
to be insufficiently equipped tor microbial

gens that are recognized by protective T 
cells. First, the intracellular location (phago­
some versus cytosol) dictates processing 
via the MHC class I or class II pathway. 
Second, the intracellular viability of the 
pathogen determines availability of poly­
peptides for processing (Fig. 2). MHC class 
1 versus MHC class II processing has been 
discussed above. Because soluble protein 
antigens are not introduced into the MHC 
class I pathway, the design of subunit vac-

©
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P agocytes (Oppenheim et al., 1991- Fried 
land et al., 1992). These inflammatory 
secreuy? 4™° and bl°Od mon^yfes)

Crete significant amounts of proteolytic 
enzymes generating an exudatfve tesfon 
Activated MP also secrete TNF which 

™ Wi®?1"0"'3 f°rma,io" (Kindler et 
a .,1989 . Eventually, T cells activated in 
draining lymph nodes as well as NK cells 

tO ,he Site Of “flammation 
Although NK cells and 7/8 T lymphocytes 
seem to precede «/p T cells, the former two 
are soon outnumbered by the last. The a/B 
T cells and 7/8 T cells interact with MP that 
text^of m.yCObacterial Peptides in the con­
text of adequate MHC molecules They 
produce IFN-7, as do NK cells, which in 

act'vates tuberculostatic macrophage 
high e'll '1 Produc,ive granuloma with a 
are confi11^ •tUrn°Ver develoPSi bacteria > 
are confined in it, and their growth is re- 
t;™" ^.Although these granulomas effec­
tively inhibit bacterial replication, they are 
geaerally unable to sterilely eradicate the 
pathogens. In particular, the multinucle- 
sXTb CeI1S warb°r M' ,ube™l°™ and 
cXla a™ t0 eradicate ,heir in‘ra- 
cellu|ar predators. Lysis of such cells 
herefore, may contribute to protection by 

allowing uptake by more efficient phagol 

marbec3'6'’ ‘he productive granuloma 
wall anlT enCapsula,ed by a fibrotic 
wall, and the center of the granuloma may 
"n fibO SeemS tO P'ay a nolafl|e role 
“fibrotic encapsulation and central necro- 
sis (Vassal!., 1992). Encapsulation further 
contributes to microbial containment, and 

ow Partlal °2 pressure (pO.) in the 
necrotic center provides 
growth conditions for M i ’ 
controlled cell destruction I 
cells, NK cells, activated MP, and/or'PW

WHY DO WE NEED MORE THAN ONE 
T-cell population for

PROTECTION?

Given that in vitro CD4 T cells CD« t 
ce ls, and 7/8 T cells are so ffighly “flar 

Wi ! respect to their functional compe- 
s“sCfor y, ° We need Several T-Ce" ^fl­
sets for optimum protection to occur’ At 
the moment, this question cannot be fully 
and^/S T fl'8' adVantage of CD8 T celll 
and 7/8 T cells over CD4 T cells is their 
restriction by MHC class I moleculeT 
which are expressed on virtually all host 
e trictL 6 MHC C,aSS " “Passion is 

Al hXh Cexa'n h°S‘ Ce"S such as Mp- Although M. tuberculosis preferentially re­
sides m MP, a few parenchyma cells, typi- 
These"1ce1|l'e become infected,

nese cells remain unnoticed by CD4 T 
cells and are identified only by CDS T cells 
(and perhaps 7/8 T cells). Second, the three 
vadoi Pk°PU at,ons ™y differ in their acti­
vation kinetics, with 7/8 T cells probably 
growth8 Th' at °f mycobacterial
growth. Thus, 7/8 T cells may perform 
essential effector functions before a/p T 
cells do. Although 7/8 T cells may be lesl 

tiol l’ ‘heir faS'er kinetics °f “obili^ 
iron and activation may give them some 

mardX H 'heSe T’Ce" poPula"'™» 
undea ln. “'°r functions lhas far 
"Clear, e.g„ m their capacity to leave the 

vascular bed or in their responsiveness to 
1ndaTTryni8na,S' F°Urlh' a/P T ce“s and 7/8 T cells vary remarkably in their
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vas-

GENETIC DETERMINANTS FOR 
SUSCEPTIBILITY AND RESISTANCE 

IN TUBERCULOSIS

!E THAN ONE 
>N FOR 
9

While there is little formal genetic evi­
dence in humans, data obtained from epi­
demiological investigations suggest that 
susceptibility to many infectious diseases, 
including tuberculosis, is under some ge­
netic control (Motulsky, 1979; Skamene, 
1986). The annual death rate from tubercu­
losis reached 10% when the disease first 
became prevalent in the Qu’appelle Valley 
Indian Reservation in Canada, eliminating 
half the Indian families in the first three 
generations; yet 40 years later, the annual 
death rate had dwindled to 0.2%, suggest­
ing selection for host resistance (Goodman 
and Motulsky, 1979). Clearly, it is conceiv­
able that different genetic strains of the 
same pathogen cause diseases in different 
geographical regions, so that with contin­
ued passage, as could be in the case of 
tuberculosis in the Qu’appelle Valley, at­
tenuated virulence and thus in a drastic 
drop in death rate over time result. While 
this confounding factor is difficult to rule 
out, nonetheless, the higher degree of con-

tissue distributions. In mucosal tissues, in­
cluding the lung, as preferred port of entry 
and site of disease manifestation in tuber­
culosis, the percentage of 7/8 T cells is 
markedly higher than in peripheral blood 
and central lymphoid organs. Finally, reg­
ulatory interactions between these T-cell 
subsets may be required. In support of this 
last possibility, evidence has been pre­
sented that 7/8 T cells control activation of 
a/p T cells not only in vitro but also in vivo 
(Kaufmann et al., 1993). Most impres­
sively, in the model of experimental listeri­
osis of 7/8 T-cell-deficient mutant mice, 
huge, abscess-like lesions develop that are 
strikingly different from the granulomatous 
lesions at the site of listerial implantation in 
healthy controls (Mombaerts et al., 1993).

cordance of tuberculosis among monozy­
gotic than dizygotic twins (Comstock, 1978) 
and the tragic incident of Lubeck in 1927 
(Anonymous, 1935), in which infants inad­
vertently immunized with a single viable 
virulent M. tuberculosis strain displayed 
marked differences in susceptibility ranging 
from death to recovery, argue for a genetic 
basis for resistance to mycobacterial dis­
eases.

In contrast to work with the human sys­
tem, experimental studies on the genetics 
of resistance to an enormous variety of 
infectious agents (salmonellae, ieishma- 
niae, mycobacteria, murine leukemia vi­
ruses, rickettsiae, etc.) in inbred strains of 
mice are abundant (Skamene, 1985). In the 
case of resistance to Salmonella typhimu- 
rium, Leishmania donovani, and BCG, 
compelling experimental evidence obtained 
from backcross linkage analyses (Skamene 
et al., 1982) suggests that resistance against 
these three pathogens is under monogenic 
control. This allele has been designated Ity, 
Lsh, and Beg in the resistance models of 5. 
typhimurium, Leishmania donovani, and 
BCG, respectively. Through typing for re­
sistance and susceptibility to BCG among 
recombinant inbred mouse strains together 
with linkage analyses and detailed dissec­
tion of a 30-centimorgan segment on murine 
chromosome 1, the cloning of the cDNA for 
the Beg gene, designated Nramp (natural­
resistance-associated macrophage protein), 
has recently been achieved (Vidal et al., 
1993). Sequence analysis of the Nramp 
cDNA reveals a 1,452-nucleotide open 
reading frame that encodes a 484-amino- 
acid protein with structural homology to a 
eukaryotic nitrate transporter. Analysis of 
Nramp cDNAs from seven Bcgr and six 
Bcgs mouse strains indicates that BCG sus­
ceptibility is the result of a G-to-A transi­
tion at position 783 associated with a non­
conservative substitution of Asp-105 for 
Gly-105 within a predicted transmembrane 
domain of Nramp. Comparison of amino 
acid sequences of the murine Nramp and a

1
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human homolog deduced from a partial 
cDNA clone reveals 89% homology be­
tween the two species. Nucleic acid se­
quence analysis indicates that Gly-105 of 
murine Nramp is conserved in the human 
sequence.

While it is known that the BcgT gene 
confers resistance against mycobacteria by 
acting early during the nonimmune phase of 
infection in mice (in contrast to the MHC 
genes, which appear to be associated with 
recovery after infection), the precise bio­
chemical and molecular mechanisms of 
how Nramp regulates resistance and sus­
ceptibility to infection remain to be defined 
(reviewed in Skamene (1986]). Experimen­
tal evidence strongly suggests that the 
Nramp phenotype is mediated via macro­
phages. It has been demonstrated that the 
cell type expressing the Nramp phenotype 
is derived from the bone marrow and is 
relatively radioresistant. In addition, the 
phenotypic expression of Nramp can be 
inactivated by chronic exposure of mice to 
silica, a macrophage poison (Gros et al., 
1983). Finally, Nramp mRNAs are prefer­
entially expressed in the reticuloendothelial 
system, particularly in macrophages. The 
recent finding that RNI generated via the 
macrophage L-arginine-dependent cyto­
toxic mechanism is effectively antimyco- 
bacterial (Denis, 1991a; Flesch and Kauf­
mann, 1991; Chan et al., 1992) and the 
demonstration of marked structural resem­
blance of Nramp protein to a eukaryotic 
nitrate transporter (Vidal et al., 1993) lend 
support to the hypothesis that regulation of 
RNI trafficking in macrophages might be 
one way by which the resistance phenotype 
of this gene is expressed. It is thus possible 
that Nramp participates in the L-arginine- 
dependent antimycobacterial pathway by 
transporting NO2", a relatively stable and 
nontoxic nitrogen oxide formed via the ox­
idation of nitric oxide in the aqueous phase, 
into the phagolysosomal compartment, 
whose acidic environment is requisite to 
and allows the formation of nitrous acid.

which dismutates to generate NO (Shank et 
al., 1962) and other more reactive and per­
haps more toxic reactive nitrogen species 
such as the nitrogen dioxide radical. A 
corollary of this possibility is that ammonia 
production by M. tuberculosis (Gordon et 
al., 1980) is a means by which generation of 
toxic RNI could be intercepted via alkalin- 
ization of the phagolysosomal content. The 
existence of a human homolog of Nramp, at 
least by cDNA analyses (Vidal et al., 1993) 
together with the presence on human chro­
mosome 2q of a region syntenic to the 
30-centimorgan segment on murine chro­
mosome 1 that contains the Beg allele 
(Schurr et al., 1990) should presage opti­
mism in unraveling the genetic basis for 
resistance and susceptibility to mycobacte­
rial diseases, at least at the early phase of 
infection. It is hoped that the elucidation of 
one aspect of this difficult question will 
form a firm springboard for understanding 
other as yet unknown genetic factors, e.g., 
the MHC molecules (Skamene, 1986), that 
aid in determining the outcome of myco­
bacterial infection.

CONCLUDING REMARKS

Around the world, as many as 60 million 
people suffer from tuberculosis. This high 
figure may lead to the false conclusion that 
protective immunity is totally insufficient 
for control of this disease. The figure, how­
ever, is clearly qualified by the even higher 
number of more than 1.7 billion infected 
individuals, i.e., one-third of the world pop­
ulation, illustrating that in the vast majority 
of infected individuals, disease does not 
develop in the face of an ongoing infection. 
Hence, protective immunity is extraordi­
narily inefficient in terminating infection 
and, at the same time, highly efficacious in 
preventing disease. Because the relation­
ship between M. tuberculosis and host im­
munity underlying infection is a labile one, 
any diminution of protective immunity will 
cause progression into clinical disease.
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