Fitting Curves

Basic regression and correlation methods assume linear relationships. Linear models provide

reasonable and simple approximations for many real phenomena, overa limited range of values.

But analysts also encounter phenomena where linear approximations are too simple; these call

for nonlinear alternatives. This chapter describes three broad approaches to modeling nonlinear

or curvilinear relationships:

1. Nonparametric methods, including band regression and lowess smoothing.

2. Linearregression with transformed variables (“curvilinear regression”), including Box—Cox
methods.

3. Nonlinear regression.

Nonparametric regression serves as an exploratory tool because it can summarize data
patterns visually without requiring the analyst to specify a particular model in advance.
Transformed variables extend the usefulness of linear parametric methods, such as OLS
regression ( regress ), to encompass curvilinear relationships as well. Nonlinear regression,
on the other hand, requires a different class of methods that can estimate parameters of
intrinsically nonlinear models.

The following menu groups cover many of the operations discussed in this chapter. The
final topic, nonlinear regression, requires a command-based approach.

Graphics — Twoway
Statistics — Nonparametric analysis — Lowess smoothing
Data - Create or change variabies — Create new variable

Statistics - Linear regression and related

Example Commands

boxcox y x1 x2 x3, model (lhs)
Finds maximum-likelihood estimates of the parameter A (lambda) for a Box-Cox
transformation of y, assuming that y is a linear function of x/, x2, and x3 plus Gaussian
constant-variance errors. The model (1hs) option restricts transformation to the left-
hand-side variable y. Other options could transform right-hand-side (x) variables by the
same or different parameters, and control further details of the model. Type help
boxcox for the syntax and a complete list of options. The Base Reference Manual gives

technical details.
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graph twoway mband y x, bands (10) Il scatter y x
Produces a y versus x scatterplot with line segments connecting the cross-medians (median
x, median y points) within 10 equal-width vertical bands. This is one form of “band
regression.” Typing mspline inplace of mband in this command would result in the
cross-medians being connected by a smooth cubic spline curve instead of by line segments.

graph twoway lowess Y x, bwidth(.4) |1 scatter y x
Draws a lowess-smoothed curve with a scatterplot of y versus x. Lowess calculations use
a bandwidth of .4 (40% of the data). In order to calculate and keep the smoothed values as
a new variable, use the related command lowess.
lowess y x, bwidth(.3) gen (newvar)
Draws a lowess-smoothed curve on a scatterplot of y versus x, using a bandwidth of .3
(30% of the data). Predicted values for this curve are saved as a variable named newvar-.
The lowess command offers more optionsthan graph twoway lowess, including
fitting methods and the ability to save predicted values. See help lowess for details.
nl exp2 y x
Uses iterative nonlinear least squares to fit a 2-parameter exponential growth model,
predicted y=5,b,"
Theterm exp2 refers to a separate program that specifies the model itself. You can write
a program to define your own model, or use one of the common models (including
exponential, logistic, and Gompertz) supplied with Stata. After nl,use predict to
generate predicted values or residuals.
nl log4 y x, init(B0=5, B1=25, B2=.1, B3=50)
Fits a 4-parameter logistic growth model (log4 ) of the form
predictedy=b,+ b /(1 +exp(-b, (x - b))
Sets initial parameter values for the iterative estimation processath,=5b =25 b,=.1.
and b, = 50.
regress lIny xl1 sqgrtx2 invx3
Performs curvilinear regression using the variables /ny, x/, sqrex2, and invx3. These
variables were previously generated by nonlinear transformations of the raw variables ¥,
x2, and x3 through commands such as the following:
generate lny = 1ln(y)
generate sgrtx2 = sqrt(x2)
generate invx3 = 1/x3
When, as in this example, the y variable was transformed, the predicted values generated
by predict yhat, orresiduals generated by predict e, resid, willbealsoin
transformed units. For graphing or other purposes, we might want to return predicted
values or residuals to raw-data units, using inverse transformations such as
replace yhat = exp (yhat)
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Band Regression

Nonparametric regression methods generally do not yield an explicit regression equation. They
are primarily graphic tools for displaying the relationship, possibly nonlinear, between y and
x. Stata can draw a simple kind of nonparametric regression, band regression, onto any
scatterplot or scatterplot matrix. For illustration, consider these sobering Cold War data
(missile.dta) from MacKenzie (1990). The observations are 48 types of long-range nuclear
missiles, deployed by the U.S. and Soviet Union during their arms race, 1958 to 1990:

:\data\missile.dta

Containg data fzsm C:
obs: 48 Missiles (MacKenzie 1990)
vars: 3 16 Jul 2005 14:57
size: 2,392 (29.9% of memory free)
storace display value

variable name type format label variable label
missile strls '%1Ss Missile
country byte %8.0g soviet US or Soviet missile?
year int 38.0g Year of first deployment
type Tyte %8.0g type ICBM or submarine-launched?
range int $8.0g Range in nautical miles
CEP floa: %3.0g Circular Error Probable (miles)

Variables in missile.dta include an accuracy measure called the “Circular Error Probable”
(CEP). CEP represents the radius of a bulls eye within which 50% of the missile’s warheads
should land. Year by year, scientists on both sides worked to improve accuracy (Figure 8.1).

graph twoway mband CEP year, bands(8)

|| scatter CEP year
11 » ytitle("Circular Error Probable, miles") legend (off)

Figure 8.1
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Figure 8.1 shows CEP declining (accuracy increasing) over time. The option bands (8)
instructs graph twoway mband to divide the scatterplotinto 8 equal-width vertical bands
and draw line segments connecting the points (median x, median y) within each band. This
curve traces how the median of CEP changes with year-.

Nonparametric regression does riot require the analyst to specifya relationship’s functional
form in advance. Instead, it allows us to explore the data with an “open mind.” This process
often uncovers interesting results, such as when we view trends in U.S. and Soviet missile
accuracy separately (Figure 8.2). The by (country) option in the following command
produces separate plots for each country, each with overlaid band-regression curve and
scatterplot. Within the by ( ) option are suboptions controlling the legend and note.

graph twoway mband CEP Year, bands (8)
| ] scatter CEP year
|1 , ytitle("Circular Error Probable, miles")
by (country, legend (off) note(""))

Figure 8.2
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The shapes of the two curves in Figure 8.2 differ substantially. U.S. missiles became much
more accurate in the 1960s, permitting a shift to smaller warheads. Three or more small
warheads would fit on the same size missile that formerly carried one large warhead. The
accuracy of Soviet missiles improved more slowly, apparently stalling during the late 1960s to
early 1970s, and remained a decade or so behind their American counterparts. To make up for
this accuracy disadvantage, Soviet strategy emphasized larger rockets carrying high-yield
warheads. Nonparametric regression can assist with a qualitative description of this sort or
serve as a preliminary to fitting parametric models such as those described later.

We can add band regression curves to any scatterplot by overlaying an mband (or
mspline ) plot. Band regression’s simplicity makes it a convenient exploratory tool, but it
possesses one notable disadvantage — the bands have the same width across the range of x
values, although some of these bands contain few or no observations. With normally
distributed variables, for.example; data density decreases toward the extremes. Consequently,

1
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the left and right endpoints of the band regression curve (which tend to dominate its
appearance) often reflect just a few data points. The next section describes a more
sophisticated, computation-intensive approach.

Lowess Smoothing

The lowess and graph twoway lowess commands accomplish a form of
nonparametricregression called lowess smoqthing (forlocally weighted scatterplot smoothing).
In general the lowess command is more specialized and more powerful, with options that
control details of the fitting process. graph twoway lowess has advantages of
simplicity, and follows the familiar syntax of the graph twoway family. The following
example uses graph twoway lowess to plot CEP against year for U.S. missiles only
(country == 0).

. graph twoway lowess CEP year if country == 0, bwidth(.4)

|1 scatter CEP year
Il , legend(off) ytitle("Circular Error Probable, miles")

Figure 8.3
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A graph very similar to Figure 8.2 would result if we had typed instead
lowess CEP year if coun try == 0, bwidth(.4)

Like Figure 8.2, Figure 8.3 (next page) shows U.S. missile accuracy improving rapidly
during the 1960s and progressing at a more gradual rate in the 1970s and 1980s. Lowess-
smoothed values of CEP are generated here with the name IsCEP. The bwidth (.4) option
specifies the lowess bandwidth: the fraction of the sample used in smoothing each point. The
defaultis bwidth (.8). The closer bandwidth is to 1, the greater the degree of smoothing.

Lowess predicted (smoothed) y values for n observations result from weighted
regressions. Let k& represent the -half-bandwidth, truncated to an integer. For each y,, a
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smoothed value ;" is obtained by weighted regressioninvolving only those observations within
the interval from i = max(1, i — k) through i = min( + £, n). The jth observation within this
interval receives weight w, according to a tricube function:
sz(l _Illj,3)3
where
u;=(x;—x;)/A
A stands for the distance between x, and its furthest neighbor within the interval. Weights
equal | forx,=x,, but fall off to zero at the interval’s boundaries. See Chambers et al. (1983)
or Cleveland (1993) for more discussion and examples of lowess methods.
lowess options include the following.
mean For running-mean smoothing. The default is running-line least squares
smoothing.
noweight  Unweighted smoothing. The defaultis Cleveland’s tricube weighting function.
bwidth( ) Specifies the bandwidth. Centered subsets of approximately bwidth x n
observations are used for smoothing, except towards the endpoints where
smaller, uncentered bands are used. The default is .bwidth(.8).
logit Transforms smoothed values to logits.

adjust Adjusts the mean of smoothed values to equal the mean of the original y
variable; like logit, adjust is useful with dichotomous y.

gen(newvar)  Creates newvar containing smoothed values of y.
nograph Suppresses displaying the graph.

plot( ) Provides a way to add other plots to the generated graph; see help
plot option.

rlopts () Affects the rendition of the reference line; see help cline options.

Because it requires n weighted regressions, lowess smoothing proceeds slowly with large
samples.

In addition to smoothing scatterplots, lowess can be used for exploratory time series
smoothing. The file ice.dta contains results from the Greenland Ice Sheet 2 (GISP2) project
described in Mayewski, Holdsworth, and colleagues (1993) and Mayewski, Meeker, and
colleagues (1993). Researchers extracted and chemically analyzed an ice core representing
more than 100,000 years of climate history. ice.dfa includes a small fraction of this
information: measured non-sea salt sulfate concentration and an index of “Polar Circulation
Intensity” since AD 1500.



Fitting Curves 221

Contains data from C:\datalice.dta

obs: 271 Greenland ics (Mayewsk: 1995)
i vars: 3 14 Jul 2005 14:57
size: 5,962 (99.9% of memory free)
storage display value

variable name type ‘format label variable label
year int $ty Year
sulfate double %10.0g S04 ion concentration, c£cb
PCI double %6.0g Polar Circulazion Intensity

To retain more detail from this 271-point time series, we smooth with a relatively narrow
bandwidth, only 5% of the sample. Figure 8.4 graphs the results. The smoothed curve has been |
drawn with “thick” width, to visually distinguish it from the raw data. (Type help
linewidthstyle for other choices of line width.)

graph twoway lowess sulfate year, bwidth(.05) clwidth(thick)
|l line sulfate year, clpattern(solid)
|| , Ytitle("SO4 ion concentration, PPb")
legend(label (1l "lowess smoothed") label(2 "raw data"))

Figure 8.4
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Non-sea salt sulfate (SO , ) reached the Greenland ice after being injected into the
atmosphere, chiefly by volcanoes or the burning of fossil fuels such as coal and oil. Both the
smoothed and raw curves in Figure 8.4 convey information. The smoothed curve shows
oscillations around a slightly rising mean from 1500 through the early 1800s. After 1900, fossil
fuels drive the smoothed curve upward, with temporary setbacks after 1929 (the Great
Depression) and the early 1970s {combined effects of the U.S. Clean Air Act, 1970; the Arab
oil embargo, 1973; and subsequent oil price hikes). Most of the sharp peaks of the raw data
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have been identified with known volcanic eruptions such as Iceland’s Hekla (1970) or Alaska’s
Katmai (1912).

After smoothing time series data, it is often useful to study the smooth and rough (residual)
series separately. The following commands create two new variables: lowess-smoothed values
of sulfate (smooth) and the residuals or rough values (rough) calculated by subtracting the
smoothed values from the raw data.

lowess sulfate year, bwidth(.05) gen (smooth)

label variable smooth "S0O4 ion concentration (smoothed) "
gen rough = sulfate - smooth

label variable rough "SO4 ion concentration (rough) "

Figure 8.5 compares the smooth and rough time series in a pair of graphs annotated using
the text( ) option, then combined.

graph twoway line smooth year, ylabel (0(50)150) xtitle("")
ytitle("Smoothed") text(20 1540 "Renaissance")
text (20 1900 "Industrialization")
text (90 1860 "Great Depression 1929")
text (150 1935 "0il Embargo 1973") saving (fig08_05a, replace)

graph twoway line rough year, ylabel (0(50)150) xtitle("")
ytitle ("Rough") text(75 1630 "Awu 1640", orientation(vertical))
text (120 1770 "Laki 1783", orientation(vertical))
text (90 1805 "Tambora 1815", orientation(vertical))
text (65 1902 "Katmai 1912", orientation(vertical))
text (80 1960 "Hekla 1970", orientation(vertical))
yline (0) saving (fig08 05b, replace)

graph combine fig08 05a.gph £fig08_05b.gph, rows(2)

Figure 8.5
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Regression with Transformed Variables — 1

By subjecting one or more variables to nonlinear transformation, and then including the
transformed variable(s) in a linear regression, we implicitly fit a curvilinear model to the
underlying data. Chapters 6 and 7 gave one example of this approach, polynomial regression,
which incorporates second (and perhaps higher) powers of at least one x variable among the
predictors. Logarithms also are used routinely in many fields. Other common transformations
include those of the ladder of powers and Box—Cox transformations, introduced in Chapter 4.

Dataset tornado.dta provides a simple illustration involving U.S. tornados from 1916 to
1986 (from the Council on Environmental Quality, 1988).

Contains data from C:\data\tornado.dta

obs: 71 U.S. tornados 1916-19856
(Council on Env. Quality 1988)

vars: 4 16 Jul 2005 14:57

size: 994 (99.9% of memory free)

storage display value

variable name type format label variable label
year int %8.0g Year

tornado int %$8.0g Number of tornados

lives int %$8.0g Number of liwves lost
avlost float %9.0g Average lives lost/tornado

The number of fatalities decreased over this period, while the number of recognized
tornados increased, because of improvements in warnings and our ability to detect more
tornados, even those that do little damage. Consequently, the average lives lost per tornado
(avlost) declined with time, but a linear regression (Figure 8.6, following page) does not well
describe this trend. The scatter descends more steeply than the regression line at first, then
levels off in the mid-1950s. The regression line actually predicts negative numbers of deaths
in later years. Furthermore, average tornado deaths exhibit more variation in early yvears than
later — evidence of heteroskedasticity.
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- graph twoway scatter avlost year
|1l 1fit avlost year, clpattern(solid)
Il , ytitle("Average number of lives lost") xlabel(1920(10)1990)
xtitle("") legend(off) ylabel(0(1)7) yline(0)

Figure 8.6
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The relationship becomes linear, and heteroskedasticity vanishes if we work instead with
logarithms of the average number of lives lost (Figure 8.7):

generate loglost = 1ln(avlost)
label variable loglost "ln(avlost)"
. regress loglost year

Source | SS df MS Number of obs = 71
————————————— e et F( 1, 6%) = LEZ,24
Model | 115.895325 1 115.895325 Probk > F = 2.300¢C
Residual | 43.8807356 69 .63595269 R-sguared = §:7254
————————————— Bt Adj R-squared = 0.7214
Total | 159.77606 70 2.28251515 Root MSE = .79747
loglost | Coef Std. Err t P>t [95% Conf. Intexvalj
_____________ o e T
year | -.0623418 .00<z18 =13, 50 0.000 -.0715545 ~.083129

cons | 120.5645 9.01£312 13.38 0.000 102.5894 138.5395

predict yhat2
(option xb assumed; fitted wvalues)

label variable yhat2 "ln(avlost) = 120.56 - .06year"
label variable loglost "ln(avlost)"
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graph twoway scatter loglost year
Il mspline yhat2 year, clpattern(solid) bands (50)
11 , ytitle("Natural log(average lives lost)")
xlabel (1920(10)1990) xtitle("") legend(off) ylabel (-4 (1)2)
yline (0)

Figure 8.7

)
1

0

-1

g(average lives lost

Natural lo
-2

-3

4

1920 1930 1940 1950 1960 1970 1980 1980

The regression model is approximately
predicted In(aviosr) = 120.56 — .O6vear
Because we regressed logarithms of lives lost on Vear, the model’s predicted values are also
measured in logarithmic units. Return these predicted values to their natural units (lives lost)
by inverse transformation. in this case exponentiating (e to power) yhat2:

- replace yhat2 = exp(yhat2)

(71 real changes made:

Graphing these inverse-transformed predicted values reveals the curvilinear regression model,
which we obtained by linear regression with a transformed y variable (Figure 8.8). Contrast
Figures 8.7 and 8.8 with Figure 8.6 to see how transformation made the analysis both simpler
and more realistic.
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graph twoway scatter avlost year
|| mspline yhat2 year, clpattern(solid) bands (50)
Il , ytitle("Average number of lives lost") xlabel (1920(10)1990)
xtitle("") legend(off) ylabel (0(1)7) yline (0)

Figure 8.8
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The boxcox command employs maximum-likelihood methods to fit curvilinear models
involving Box—Cox transformations (introduced in C hapter 4). Fitting a model with Box—Cox
transformation of the dependent variable ( model (1hs) specifies left-hand side) to the
tornado data, we obtain results quite similar to the model of Figures 8.7 and 8.8. The nolog
option in the following command does not affect the model. but suppresses display of log
likelihood after each iteration of the fitting process.

boxcox avlost year, model (1lhs) nolog

Lhumoer i obs = 71

LR ¢chi2 (1) = 92.28

Log likelihood = -7.7185522 Ereob > chi2 = 0.000

avlost | Coef gt2. Exr z P>z {95% Conf. Intsrval]

_____________ +_._...,___...___.___-_____.__._____._________--___._____________.__..___-_...__

/theza | -.056095¢ 28126 -0.87 0.38¢ -.1828519 07066
Estimates of scale-variantc parzmeters

Coef

-.0661891
127.9713
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P-Value
Prob > chi2

The boxcox output shows theta = —.056 as the optimal Box—Cox parameter for
transforming avlost, in order to linearize its relationship with year. Therefore, the left-hand-
side transformation is

alviost' %' = (alvlost~*** - 1)/-.056
Box-Cox transformation by a parameter close to zero, such as —.056, produces results similar
to the natural-logarithm transformation we applied earlier to this variable “by hand.” It is
therefore not surprising that the boxcox regression model

predicted alviosr =**'=127.97 — 07vear
resembles the earlier model (predicted In(avlost) = 120.56 — .06year) drawn in F igures 8.7 and
8.8. The boxcox procedure assumesnormal, independent, and identically distributed errors.
It does not select transformations with the aim of normalizing residuals, however.

boxcox can fit several types of models, including multiple regressions in which some or
all of the right-hand-side variables are transformed by a parameter different from the y-variable
transformation. It cannot apply different transformations to each separate right-hand-side
predictor. To do that, we return to a “by hand” curvilinear-regression approach, as illustrated
in the next section.

Regression with Transformed Variables — 2

For a multiple-regression example, we will use data on living conditions in 109 countries found
in dataset nations.dta (from World Bank 1987; World Resources Institute 1993).

obs: 10¢ Data on 109 naztions, ca. 1985

vars: i5 16 Jul 2005 14:57

size: 4,033 (8%.3% of mercry free)

storage <display alue

variable name type ftrmat _abel variable label
country str8 S Country
pop float #:.0g 1985 populaticn in millions
birth byte .09 Crude birth rzze/1000 people
death byte 22009 Crude death rzte/1000 people
chldmort byte ¥&.0g Child (1-4 yr) mortality 1985
infmort int $2.0g Infant (<1 yr) mortality 1985
life byte ¥£.0g Life expectancy at birth 1985
food int *5.0g Per capita daily calories 1985
energy int £8.0g Per cap energy consumed, kg oil
gnpcap int %8.0g Per capita GNP 1985
gnpgro float %3%.0g Annual GNP growth % 65-85
urban byte %¥8.0g % population urban 198S
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Experimenting with ladder-of-powers transformations reveals that the log of gnpcap and
the square root of chldmort have distributions more symmetrical, with fewer outliers or
potential leverage points, than the raw variables. More importantly, these transformations
largely eliminate the nonlinearities: compare the raw-data scatterplots in Figure 8.9 with their
transformed-variables counterparts in Figure 8.10, on the following page,

TP ———
R s it v ——

P ————— e A . 5
aro——

yeborrasers

e e ——




Fitting Curves 229
generate loggnp = loglO0 (gnpcap)
label variable loggnp "Log-10 of per cap GNP"
generate srmort = sqrt(chldmort)
label variable srmort "Square root child mortality"
graph matrix loggnp srmort birth, half
Figure 8.10
Log-10
of per
cap GNP
We can now apply linear regression using the transformed variables:
regress birth loggnp srmort
Source | Ss daf MsS Number of obs = 109
------------- e F( 2, 106) = 198.06
Model | 15837.9603 2 7918.98016 Prob > F = 0.0000
Residual | 4238.18646 106 39.9828911 R-squared = 0.7889
————————————— A o i e e Adj R-squared = 0.7849
Total | 20076.1468 108 185.890248 Root MSE = 6.3232
birth | Coef Std. Err t P>|t]| [95% Conf. Interval]
_____________ +___.__..__..____.____._____—_—_——___-_...________._..______.____..._.____...__..._
loggnp | =-2.353738 1.686255 -1.40 0.166 -5.696903 .9894259
srmort | 5:577359 .533567 10.45 0.000 4.51951 6.635207
_cons | 26.19488 6.362687 4.12 0.000 13.58024 38.80953

Unlike the raw-data regression (not shown), this transformed-variables version finds that per
capita gross national product does not 51gn1ﬁcantly affect birth rate once we control for child
mortality. The transformed-variables regression fits slightly better: R 2, =.7849 instead of
.6715.  (We can compare R 2, across models here ‘only because both have the same
untransformed y variable.) Leverage plots would confirm that transformations have much
reduced the curvilinearity of the raw-data regression.
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Conditional Effect Plots

Conditional effect plots trace the predicted values of y as a function of one x variable, with
other x variables held constant at arbitrary values such as their means, medians, quartiles, or
extremes. Such plots help with interpreting results from transformed-variables regression.

Continuing with the previous example, we can calculate predicted birth rates as a function
of loggnp, with srmort held at its mean (2.49):
generate yhatl = _b[_cons] + _b[loggnp]l*loggnp + _blsrmort]*2.49
label variable yhatl "birth = f(gnpcdp | srmort = 2. 49)
The _b[varname] terms refer to the regression coefficient on varname from this session’s most
recent regression. _b[_cons] is the y-intercept or constant.

For a conditional effect plot, graph yhat1 (after inverse transformation if needed, although
itis not needed here) against the untransformed x variable (Figure 8.11). Because conditional
effect plots do not show the scatter of data, it can be useful to add reference lines such as the
x variable’s 10th and 90th percentiles, as shown in Figure 8.11.

graph twoway line yhatl gnpcap, sort xlabel(,grid) xline (230 10890)

Figure 8.11
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Similarly, Figure 8.12 depicts predicted birth rates as a function of srmort, with loggnp held
at its mean (3.09):

generate yhat2 = _b[_cons] + _b[loggnp]*3.09 + _blsrmort] *srmort

label variable yhat2 "birth = £ (chldmort | loggnp = 3.09)"

graph twoway line yhat2 chldmort, sort xlabel(,grid) xline (0 27)
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Figure 8.12
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How can we compare the strength of different x variables’ effects? Standardized regression
coefficients (beta weights) are sometimes used for this purpose, but they imply a specialized
definition of “strength” and can easily be misleading. A more substantively meaningful
comparison might come from looking at conditional effect plots drawn with identical yscales.
This can be accomplished easily by using graph combine , and specifying common y-axis
scales, as done in Figure 8.13. The vertical distances traveled by the predicted values curve,
particularly over the middle 80% of the x values (between 10th and 90th percentile lines).
provide a visual comparison of effect magnitude.

- graph combine fig08 11.gph £fig08 12.gph, ycommon cols(2) scale{(l.25)

Figure 8.13
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Combining several conditional effects plots into one image with common vertical scales,
as done in Figure 8.13, allows quick visual comparison of the strength of different effects.
Figure 8.13 makes obvious how much stronger is the effect of child mortality on birth rates —
as separate plots (Figures 8.11 and 8.12) did not.

Nonlinear Regression — 1

Variable transformations allow fitting some curvilinear relationships using the familiar
techniques of intrinsically linear models. Intrinsically nonlinear models, on the other hand,
require a different class of fitting techniques. The nl command performs nonlinear
regression by iterative least squares. This section introduces it using a dataset of simple
examples, nonlin.dta:

Contains data from C:\data\nonlin.dta

obs: 100 Nonlinear model examples
(artificial data)
vars: 5 16 Jul 2005 14:57
size: 2,100 (99.9% of memory free)
storage display value
variable name type format label variable label
X byte $9.0g Independent variable
yi float %9.0g yl = 10 * 1.03”x + e
y2 float %9.0g Y2 =10 * (1 - .95"x) + e
y3 float %9.0g y3 = 5 + 25/ (l+exp(-.1*(x-50)))
+ e
v4 float %9.0g y4d = 5 +

Sorted by: x

The nonlin.dta data are manufactured, with y variables defined as various nonlinear
functions of x, plus random Gaussian errors. y1, for example, represents the exponential
growth process y/ = 10 x 1.03*. Estimating these parameters from the data, n1 obtains vl
= 11.20 x 1.03”, which is reasonably close to the true model.

nl exp2 yl x

(obs = 100)
Iteration 0: residual SS = 27625.96
Iteration 1: residual SS = 26547.42
Iteration 2: residual SS = 26138.3
Iteration 3: residual SS = 26138.29
Source | SS df MS Number of obs = 100
————————————— B T T TN, F( 2, 98) = 1250.42
Model | 667018.255 2 333509.128 Prob > F = 0.0000
Residual | 26138.2933 98 266.717278 R-squared = 0.9623
————————————— Bttt b T S S Adj R-squared = 0.9615
Total | 693156.549 100 6931.56549 Root MSE = 16.33148
Res.' dev. = 840.3864
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yl Coef Std. Err t B> £ 95% Conf. Intezrwval
bl | 11.20416 1.146682 9.77 0.000 8.928602 13.47971
b2 1.028838 .001240C4 829.4: 3.000 1.028376 1.83129%9

(SE's, P values, CI's, and correlations are asymptotic approximations)

The predict command obtains predicted values and residuals for a nonlinear model
estimated by nl . Figure 8.14 graphs predicted values from the previous example, showing
the close fit (R* = .96) between model and data.

predict yhatl
(option yhat zssumed; fitted values)

graph twoway scatter yl1 x
| line yhatl x, sort
[l , legend(off) ytitle("yl = 10 * 1.03%x + e") xtitle("x"

Figure 8.14
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The exp2 partofour nl exp2 yl x command specified a particular exponential
l growth function by calling a brief program named nlexp2.ado. Stata includes several such
programs, defining the following functions:

exp3 3-parameter exponential: y=b,+b,b,"
, exp2 2-parameter exponential: y=5,b,"

exp2a 2-parameter negative exponential: y=b,(1 - b,*)
, log4 4-parameter logistic; b, starting level and (b, + b, ) asymptotic upper limit:

y=botb /(1 +exp(-b,(x-b,)))

log3 3-parameter logistic; O starting level and b, asymptotic upper limit:

| ¥ =by /(1 +exp(-by (x -b, )
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gomd4  4-parameter Gompertz; b, starting level and (b, + b, ) asymptotic upper limit:
Y = b, + b, exp(-exp(-b, (x -b,)))
gom3  3-parameter Gompertz; 0 starting level and b, asymptotic upper limit:
y = b, exp(-exp(-b, (x -b,)))
nonlin.dta contains examples corresponding to exp2 (y/), exp2a (»2), 1log4 (y3), and
gom4 (y4) functions. Figure 8.15 shows curves fit by nl to y2, y3, and y4.

Figure 8.15
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Users can write further nlfinction programs of their own. Here is the code for the
nlexp2.ado program defining a 2-parameter exponential growth model:

*! version 1.1.3 12junl1998
program define nlexp2
version 6
if "‘ll"=="?ll {
global S _2 "2-param. exp. growth curve, $S_E_depv=bl*p2~ 2'"
global S_1 "bl b2"

/*
Approximate initial values by regression of log Y on X.
®)
local exp "[e(wtype)' ‘e(wexp)']"
tempvar Y
quietly {
gen 'Y' = log(‘e(depvar)') if e(sample)

reg 'Y' "2' ‘exp' if e(sample)
}

global bl = exp(_b[_cons])
global b2 = exp(_b[ 2'])
exit

}
replace “1'=$bl*($b2)~ 2"
end
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This program finds some approximate initial values of the parameters to be estimated,
storing these as “global macros™ named bl and b2 . It then calculates an initial set of
predicted values, as a “local macro” named 1, employing the initial parameter estimates and
the model equation:

replacs "1' = $bl * ($p2)~'2

Subsequent iterations of nl will return to this line, calculating new predicted values
(replacing the contents of macro 1 ) as they refine the parameter estimates bl and b2 . In
Stata programs, the notation $b1l means “the contents of global macro b1 .” Similarly, the
notation ' means “the contents of local macro 1 .”

Before attempting to write your own nonlinear function, examine nllog4.ado ,
nlgomd.ado , and others as examples, and consult the manual or help nl for
explanations. Chapter 14 contains further discussion of macros and other aspects of Stata
programming.

Nonlinear Regression — 2

Our second example involves real data, and illustrates some steps that can help in research.
Dataset lichen.dta concems measurements of lichen growth observed on the Norwegian arctic
island of Svalbard (from Werner 1990). These slow-growing symbionts are often used to date
rock monuments and other deposits, so their growth rates interest scientists in several fields.

Contains dzta from C:\data\lichen.dta
obs: 11 Lichen growth (Werner 1990)
vars: 8 14 Jul 2005 14:57
size: 572 (99.9% of memory free)
stcrage display value

variable nz-= <ype format label variable label

locale szr3l 431% Locality and feature
point seri i9s Control point
date int %$8.00 Date
age iz ¥8.0¢g Age in years

rshort Lloat 5.0z Phizccarpon short axis mm
rlong Slcat %9.03 Rhizocarpon long axis mm
pshort 2o 28.0g P.minuscula short axis mm
plong 85 o ¥8.0g P.minuscula long axis mm

Lichens characteristically exhibit a period of relatively fast early growth, gradually slowing,
as suggested by the lowess-smoothed curve in Figure 8.16.
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Lichenometricians seek to summarize and compare such patterns by drawing growth curves.
Their growth curves might not employ an explicit mathematical model, but we can fit one here
to illustrate the process of nonlinear regression. Gompertz curves are asymmetrical S-curves,
which have been widely used to model biological growth: '

y=b,exp(-exp(-b,(x -b,)))
They might provide a reasonable model for lichen growth.
If we intend to graph a nonlinear model, the data should contain a good range of closely
spaced x values. Actual ages ofthe 11 lichen samples in lichen.dra range from 28 to 346 years.

We can create 89 additional artificial observations, with “ages™ from 0 to 352 in 4-vear
increments, by the following commands:

range newage 0 396 100
obs was 11, now 100

replace age = newage [_n-11] if age >=
(89 real changes made)
The first command created a new variable, newage, with 100 values ranging from 0 to 396 in
4-year increments. In so doing, we also created 89 new artificial observations, with missing
values on all variables except newage. The replace command substitutes the missing
artificial-case age values with newage values, starting at 0. The first 15 observations in our
data now look like this:

list rlong age newage in 1/15
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6. | g 80 20 |
s 7 89 24 |
8. | 10 89 28 |
2. 3¢ 346 32 |
16. | 3¢ 346 .36 |

| === mmmm oo |
11. | 25.5 131 40 |
12. | . 0 a4 |
13. | . 4 48 |
14. | 8 52 |
15. | 12 56 |

summarize rlong age newage

Varizable Obs Mean Std. Dev. Min Max
rlong : & § 14.86364 11.31391 1 34
age 100 170.68 104.7042 0 352
newage . 100 198 116.046 0 396

Wenow could drop newage. Only theoriginal 11 observations have nonmissing rlong
values, so only they will enter into model estimation. Stata calculates predicted values for any
observation with nonmissing x values, however. We can therefore obtain such predictions for
both the 11 real observations and the 89 artificial ones, which will allow us to graph the
regression curve accurately.

Lichen growth starts with a size close to zero, so we chose the gom3 Gompertz function
rather than gom4 (whichincorporates a nonzero takeoff level, the parameter b, ). Figure 8.16
suggests an asymptotic upper limit somewhere near 34, suggesting that 34 should be a good
guess or starting value of the parameter b, . Estimation of this model is accomplished by

nl gom3 rlong age, init(B1l=34) nolog

(cbs = 11)
Source | 58 df MS Number of obs = 11
e e F( 3, 8) = 125.68
3633.16112 3 1211.05371 Prob > F = 0.0000
= al 77.0888815 8 9.63611018 R-squared = 0.9792
———————————————————————————————————————————— Adj R-squared = 0.2714
Total 3710..25 11 337.295455 Root MSE = 3.104208
Res. dev. = 52.624£35

3-parameter Gompertz function, rlong=bl*exp (-exp (-b2* (age-b3)))

rlong Coef Std. Eryx E P>|t| [95% Conf. Inter==zl]
bl | 34.36637 2.267186 15.16 0.000 29.13823 39.52451
b2 | .0217685 .0060806 3.58 0.007 .0077465 .0357 =204
b3 | 88.79701 5.632545 15.76 0.000 75.80834 101.T357

(SE's, P values, CI's, and correlations are asymptotic approximations)

A nolog option suppresses displaying a log of iterations with the output. All three parameter
estimates differ significantly from 1. '
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We obtain predicted values using predict, and graph these to see the regression curve.
The yline option is used to display the lower and estimated upper limits (0 and 34.366) of
this curve in Figure 8.17.

predict yhat
(cption yhat assumed; fitted velues)

graph twoway scatter rlong age
|| mspline yhat age, clpattern(solid) bands (50)
Il , legend(off) yline (0 34.366)
ytitle ("Rhizocarpon long axis, mm") xlabel (0(100) 400, grid)

& Figure 8.17
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Especially when working with sparse data or a relatively complex model, nonlinear
regression programs can be quite sensitive to their initial parameter estimates. The init
option with nl permits researchers to suggest their own initial values if the default values
supplied by an nlfunction program do not seem to work. Previous experience with similar data,
or publications by other researchers, could help supply suitable initial values. Alternatively,
we could estimate through trial and error by employing generate to calculate predicted
values based on arbitrarily-chosen sets of parameter values and graph to compare the
resulting predictions with the data.




Robust Regression

Stata’s basic regress and anova ¢ommands perform ordinary least squares (OLS)
regression. The popularity of OLS derives in part from its theoretical advantages given “ideal”
data. Iferrors are normally, independently, and identically distributed (normali.i.d.), then OLS
is more efficient than any other unbiased estimator. The flip side of this statement often gets
overlooked: if errors are not normal, or not i.i.d., then other unbiased estimators might
outperform OLS. In fact, the efficiency of OLS degrades quickly in the face of heavy-tailed
(outlier-prone) error distributions. Yet such distributions are common in many fields.

OLS tends to track outliers, fitting them at the expense of the rest of the sample. Over the
long run, this leads to greater sample-to-sample variation.or inefficiency when samples often
contain outliers. Robust regression methods aim to achieve almost the efficiency of OLS with
ideal data and substantially better-than-OLS efficiency in non-ideal (for example, nonnormal
errors) situations. “Robust regression” encompasses a variety of different techniques, each with
advantages and drawbacks for dealing with problematic data. This chapter introduces two
varieties of robust regression, rreg and qreg,and briefly compares their results with those
of OLS ( regress). '

rreg and greg resist the pull of outliers, giving them better-than-OLS efficiency inthe
face of nonnormal, heavy-tailed error distributions. They share the OLS assumption that errors
are independent and identically distributed, however. As a result, their standard errors, tests,
and confidence intervals are not trustworthy in the presence of heteroskedasticity or correlated
errors. To relax the assumption of independent, identically distributed errors when using
regress orcertain other modeling commands (although not rreg or greg), Stata offers
options that estimate robust standard errors.

For clarity, this chapter focuses mostly on two-variable examples, but robust multiple
regression or N-way ANOVA are straightforward using the same commands. Chapter 14
returns to the topic of robustness, showing how we can use Monte Carlo experiments to
evaluate competing statistical techniques.

Several of the techniques described in this chapter are available through menu selections:
Statistics — Nonparametric analysis — Quantile regression

Statistics — Linear regression and related — Linear regression — Robust SE
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Example Commands

rreg y xl1 x2 x3
Performs robust regression of v on three predictors, using iteratively reweighted least
squares with Huber and biweight functions tuned for 95% Gaussian efficiency. Given
appropriately configured data, rreg can also obtain robust means, confidence intervals,
difference of means tests, and ANOVA or ANCOVA.

rreg y xl x2 x3, nolog tune(6) genwt (rweight) iterate(10)
Performs robustregression of 1 on three predictors. The options shown above tell Stata not
to print the iteration log, to use a tuning constant of 6 (which downweights outliers more
steeply than the default 7), to generate a new variable (arbitrarily named rweight) holding
the final-iteration robust weights for each observation, and to limit the maximum number
of iterations to 10.

qreg y x1 x2 x3
Performs quantile regression, also known as least absolute value (LAV) or minimum LI-
norm regression, of y on three predictors. By default, greg models the conditional .5
quantile (approximate median) of y as a linear function of the predictor variables, and thus
provides “median regression.”

qreg y xl1 x2 x3, quantile(.25)
Performs quantile regression modeling the conditional .25 quantile (first quartile) of yas
a linear function of x/, x2, and x3.

. bsqreg y x1 x2 x3, rep(100)
Performs quantile regression, with standard errors estimated by bootstrap data resampling
with 100 repetitions (default is rep (20)).

. predict e, resid
Calculates residual values (arbitrarily named ¢) after any regress, rreg, greg, or
bsqreg command. Similarly, predict yhat calculates the predicted values of y.
Other predict options apply, with some restrictions.

TRt o et St

regress y xl x2 x3, robust
Performs OLS regression of y on three predictors. Coefficient variances, and hence
standard errors, are estimated by a robust method (Huber/White or sandwich) that does not
assume identically distributed errors. With the cluster () option, one source of
correlation among the errors can be accommodated as well. The User’s Guide describes
the reasoning behind these methods.

Regression with Ideal Data

To clarify the issue of robustness, we will explore the small (n = 20) contrived dataset
robustl.dta:

Contains data from C:\data\robustl.dta

obs: 20 Robust regreésion examples 1
(artificial data)
vars: 10 17 Jul 2005 09:35

size: 880 (99.9% of memory free)



Sorted by:

display
format
Normal X
Normal errors

yl = 10 + 2*x
Normal errors
y2 = 10 + 2*x

+ el
with
+ e2

1 outlier

Normal X with 1 leverage obs.

Normal errors with 1 extreme
y3 = 10 + 2*x3 + e3

Skewed errors

y4d = 10 + 2*x + ed4

The variables x and e/ each contain 20 random values from independent standard normal
distributions. y/ contains 20 values produced by the regression model:

yl=10

+2x + el

The commands that manufactured these first three variables are

clear

set obs 20
generate x
generate e
generate y

invnorm(uniform())
1 =
1

invnorm(uniform())
10 + 2*x + el

With real data, coding mistakes and measurement errors sometimes create wildly incorrect
values. To simulate this, we might shift the second observation’s error from —0.89 to 19.89:

generate e
replace e2
generate y

2 = el
= 19.89 in 2
2 = 10 + 2*x + e2

Similar manipulations produce the other variables in robustl.dta.

y1 and x present an ideal regression problem: the expected value of y/ really is a linear
function ofx, and errors come fromnormal, independent, and identical distributions — because
we defined them that way. OLS does a good job of estimating the true intercept (10) and slope
(2), obtaining the line shown in Figure 9.1.

regress yl

|
_____________ +
Model |
|

+

|

X
SS df MS

134.059351 1 134.059351
22.29157 18 1.23842055
156.350921 19 8.22899586
Coef Std. Err t
2.048057 .1968465 10.40
9.963161 .2499861 39.85

Number of obs = 20
F( 1, 18) = 103.25
Prob > F = 0.02000
R-squared = 0.38574
Adj R-squared = 0.3495
Root MSE = 1.1128
P>|t| [95% Conf. Interwval)
0.000 1.634498 2.461616
0.000 9.43796 10.48836

predict yhatlo
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graph twoway scatter vyl x
|| line yhatlo x, clpattern(solid) sort
|1 r Ytitle("yl = 10 + 2%x + el") legend (order (2)
label (2 "OLS line") pPosition(11) ring(0) cols (1))

Figure 9.1
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An iteratively reweighted least squares (IRLS) procedure, rreg,obtainsrobust regression
estimates. The first rreg iteration begins with OLS. Any observations so influential as to
| have Cook’s D values greater than 1 are automatically set aside after this first step. Next,
il weights are calculated for each observation using a Huber function, which downweights
,J ' observations that have larger residuals, and weighted least squares is performed. After several
| WLS iterations, the weight function shifts to a Tukey biweight (as suggested by Li 1985), tuned
i for 95% Gaussian efficiency (see Hamilton 1992a for details). rreg estimates standard
5 errorsand tests hypotheses using a pseudovalues method (Street, Carroll and Ruppert 1988) that

does not assume normality.

rreg yl x
Huber iteration 1: maximum difference in weights = .35774407
Huber iteration 2: maximunm difference in weights = .,02181578
{ Biweight iteration 3: maximum difference in weights = ,14421371
i Biweight iteration 4: maximu= difference in weights = .01320276
% Biweight iteration 5: maximum difference in weights = ,00265408
§ Robust regression estimates Number of obs = 20
g F{ 1, 18) = 79.96
Prob > F = 0.0000
vyl | Coef Std. Err t P> |t ,[95% Conf. Interval]
_____________ +________________________________________________________________
x | 2.047813 .2290049 8.94 0.000 1.566692 2.528935
cons | 9.936163 .2908259 34,17 0.000 9.325161 10.54717
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L]

This “ideal data™ example includes no serious outliers, so here rreg is unneeded. The
rreg intercept and slope estimates resemble those obtained by regress (and are not far
from the true values 10 and 2), but they have slightly larger estimated standard errors. Given
normal i.i.d. errors, as in this example, rreg theoretically possesses about 95% of the
efficiency of OLS.

rreg and regress both belong to the family of M-estimators (for maximum-
likelihood). An alternative order-statistic strategy called L-estimation fits quantiles of v, rather
than its expectation or mean. For example, we could model how the median (.5 quantile) of y
changes with x. qreg, an LI-type estimator, accomplishes such quantile regression and
provides another method with good resistance to outliers:

qreg yl x
Iteration 1: WLS sum of weighted deviations = 17.711531
Iteration 1: sum of zbs. weighted deviations = 17.130001
Iteration 2: sum of zbs. weighted deviations = 16.858602
Median regression Number of obs = 20
Raw sum of deviatiocns 46.84 (about 10.4)
Min sum of deviations 16.8586 Pseudo R2 = 0.6401
yl | Coef Std. Err. t P>t [95% Conf. Interval
_____________ +..___-____._-—_-_—_.._.._-______——..—__—__-________..___—____________—_
x | 2.133896 .2590447 8.26 0.000 1.595664 2.68412¢
cons | 9.65342 .3564108 27.09 0.000 8.904628 10.40221

Although gqreg obtains reasonable parameter estimates, its standard errors here exceed those
of regress (OLS)and rreg. Given ideal data, qreg is the least efficient of these three
estimators. The following sections view their performance with less ideal data.

Y Outliers

The variable y2 is identical to y/, but with one outlier caused by the “wild” error of observation
#2. OLS has little resistance to outliers, so this shift in observation #2 (atupper left in Figure
9.2) substantially changes the regress results:

regress y2 x

Source | 85 df MS Number cf cbs = 20
————————————— e et 1 (R ig) = 0.97
Model | 18.724271 1 18.764271 Prob > F = 0.3378
Residual | 348.233471 18 19.3463039 R-sgquarsd = 0.0511
------------- e e e e - Adj R-sguared = -0.0016
Total | 366.937742 19 19.3156706 Root MSE = 4.3984

y2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____________ e e e
x| .7662304 .7780232 0.98 0.338 -.8683356 2.400796

cons | 11.1579 .9880542 11.29 0.000 9.082078 1323373
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predict yhat2o
(option xb assumed; fitted values)

. label variable yYhat2o "OLS line (regress) "

The outlier raises the OLS intercept (from 9.936 to 1 1.1579) and lessens the slope (from 2.048
t00.766). R* has dropped from .8574 t0 .0511. Standard errors quadrupled, and the OLS slope
(solid line in Figure 9.2) no longer significantly differs from zero.

The outlier has little impacton rreg, however, as shown by the dashed line in Fi gure 9.2,
The robust coefficients barely change, and remain close to the true parameters 10 and 2; nor do
the robust standard errors increase much.

rreg y2 x, nolog genwt (rweight?2)

Robust regression estimates Number of obs = 19
F( 1, 17) = 63.01

Prob > F = 0.0000

y2 | Coef. Std. Err. ol P>t [95% Conf. Irzerval)
_____________ +_______________________________________-_______________-________
x | 1.979015 .2493146 7.94 0.000 1.453007 2.+505023

cons | 10.00897 .3071265 32.59 0.000 9.360986 22.65695

Predict yhat2r
(option xb assumed; fitted values)

label variable yhat2r "robust regression (rreg)"

- graph twoway scatter y2 x
|1l line yhat2o x, clpattern(solid) sort
Il line yhat2r x, clpattern(longdash) sort
|1 , Ytitle("y2 = 10 + 2*x + e2")
legend (order (2 3) position(l) ring(0) cols (1) margin(sides))

Figure 9.2
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The nolog option above caused Stata not to print the iteration log. The

= genwt (rweight2) option saved robust weights as a variable named rnwveight2.
1 p g g
g predict resid2r, resid

list y2 x resid2r rweight2

e e e +
| y2 X resig’ s rwelchit? |
| e e |
1. | 5.37 -1.37 -.7403C" 24641465 |
2. | 26.19 -1.:5 19.842:1: |
3. | 5.93 -1.74  -.6354:%: 28027273 |
4. | 8.58 -1.:5 1.262434 2123388 0
5. | 6.16 =1.57 =1.7314:: T2I7531 |
6.
7.
8.
9.
10.
11. | 11.40 0.2 52026¢+ 63 |
12. | 13.26 0.5 1.8855.: 65 |
13. | 10.88 0.78  -.6725%:: 33
14. | 9.58 0.79  -1.9923:: 18 1
15. | 12.41 1.26 -.09252:3" 68 |
e |
16. | 14.14 1.27 1.6176:3 i
17. | 12.66 1.47 -.25811%: : '
18. | 12.74 1.51  -.45518:: 27957817 |
19. | 12.70 1.21  -.890983: 22307041 |
20. | 14.19 2.12 -.01447¢" 29927651 |
+ ——————————————————————————————————————— -

Residuals near zero produce weights near one; farther-outresiduals get progressively lower
weights. Observation #2 has been automatically set aside as too influential because of Cook’s
D>1. rreg assigns its rweight2 as “missing.” so this observation has no effect on the final
estimates. The same final estimates, although not the correct standard errors or tests, could be
obtained using regress with analytical weights (results not shown):

. regress y2 x [aweight = rweight2]
Applied to the regression of y2 on x, greg also resists the outlier’s influence and

performs better than regress,butnotaswellas rreg. greg appears less efficient than
rreg, and in this sample its coefficient estimates are slightly farther from the true values of

10 and 2.
qreg y2 x, nolog

Median regression Number of obs = 20
Raw sum of devizziors 55.<% (abzut 1.0.88)
Min sum of devizzionz :6.200:7 Pseudo R2 = 0.3613
y2 | Cos: Std. 'BEY t P>|t| [25% Conf. Interval]
] _____________ s A S
x | 1.821428 .4225944 4.44 '0.000 .9588014 2.684055
cons | 10.125 .5028526 19.88 0.000 9.045941 11.18406
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Monte Carlo researchers have also noticed that the standard errors calculated by qreg
sometimes underestimate the true sample-to-sample variation, particularly with smaller
samples. As an alternative, Stata provides the command bsqgreg, which performs the same
median or quantile regression as qreg , but employs bootstrapping (data resampling) to
estimate the standard errors. The option rep( ) controls the number of repetitions. Its
default is rep (20), which is enough for exploratory work. Before reaching “final”
conclusions, we might take the time to draw 200 or more bootstrap samples. Both qreqg and
bsqgreg fitidentical models. In the example below, bsqreg also obtains similar standard
errors. Chapter 14 returns to the topic of bootstrapping.

bsqreg y2 x, rep(50)

(fitting base model;

(BOOESELEPBAIIG v v v v s 5168 5 5665 S n 3 om0 e 0 500 8 50 5 055 5 0 5 s o )

Median recression, Zootstrap(50) SEs Numzsr of obs = 20
Raw sum of deviat:ons 56.68 (about 10.88)

Min sum of deviations 36.20036 Psewdo R2 = 0.3613
y2 | Coef Std. Err t P>|t [95% Conf Interval]
_____________ o e e e
X | 1.221428 .4084728 4.46 0.00C .9632587 2.679598
cons | 10.115 .4774718 21.18 0.00C 2.111869 11.11813

X Outliers (Leverage)

rreg, qreg,and bsqreg deal comfortably with y-outliers, unless the observations with
unusual y values have unusual x values (leverage) too. The y3 and x3 variables in robust.dta
present an extreme example of leverage. Apart from the leverage observation (#2), these
variables equal y/ and x.

The high leverage of observation #2, combined with its exceptional y3 value, make it
influential: regress and qreg bothtrackthisoutlier,reportingthatthe“best—ﬁtting”line
has a negative slope (Figure 9.3).

. regress y3 x3

Source | SS df MS Number of obs = 20
————————————— to BC 1; 18) = 11..01
Model | 139.306724 1 139.306724 Prch > © = 0.0038
Residuzal | 227.591018 18 12.648501 R-sgua 2.3796
————————————— B T a - 0.3451
Total | 366.397742 19 19.3156706 R 3.5566

¥3 | Coef. Std: E¥®: t P>t [95% Conf. Interval]
_____________ o e e e e e e e e e e e
x3 | -.6212248 .1871873 ~3.32 0.004 -1.014512 -.227938

cons | 10.380931 .8063436 13.41 0.000 9.115244 12.50337

predict yhat3o

label variable yhat3o "OLS regression (regress)"




e

Robust Regression 247

greg y3 x3, nolog
Median regression Number of obs = 20
Raw sum cf deviations 56.68 (about 10.8%8)
Min sum of deviations 56.19466 Pseudo R2 = 0.0086
y3 | Coef std. Err E B> e [95% Conf. Interval]
_____________ +—..__———_.———_—_—-——-——————————————————————————————————_——-_——__——_
x3 | =:6222217 .347103 -1.7% 0.090 -1.351458 .1070146
cons | 11.36533 1.419214 8.01 0.00C0 8.383676 14.34699
predict yhat3g
label variable yhat3q "median regression (gqreqg) "
rreg y3 x3, nolog
Robust regression estimates Number of obs = 19
E 1. 17) = 63.01
Prob > F = 0.0000
y3 | Coef Std. Errx t P>it {95% Conf. Interval]
[ T e e e o 5 O e o o oo ol 5 T e S
| x3 | 1.979015 .2493146 7.94 0.000 1.453007 2.505023
cons | 10.00897 .3071265 32.59 0.000 9.360986 10.65695

. predict yhat3r
label variable yhat3r "robust regression (rreg)™"

graph twoway scatter y3 x3
Il line yhat3o x3, clpattern(solid) sort
Il line yhat3r x3, clpattern(longdash) sort
Il line yhat3q x3, clpattern(shortdash) sort ,
ytitle("y3 = 10 4+ 2*x 4+ e3") legend (order(4 3 2) position(5)
ring(0) cols(l) margin(sides)) ylabel (-30(10) 30)

Figure 9.3
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Figure 9.3 illustrates that regress and greg are not robust against leverage (x-
outliers). The rreg program. however, not only downweights large-residual observations
(which by itself gives little protection against leverage), but also automatically sets aside
observations with Cook’s D (influence) statistics greater than 1. This happened when we
regressed y3 on x3; rreg ignored the one influential observation and produced a more
reasonable regression line with a positive slope, based on the remaining 19 observations.

Setting aside high-influence observations, as done by rreg, provides a simple but not
foolproof way to deal with levera ge. More comprehensive methods, termed bounded-influence
regression, also exist and could be implemented in a Stata program.

The examples in Figures 9.2 and 9.3 involve single outliers, but robust procedures can
handle more. Too many severe outliers, or a cluster of similar outliers, might cause them to
break down. But in such situations, which are often noticeable in diagnostic plots, the analyst
must question whether fitting a linear model makes sense. It might be worthwhile to seek an
explicit model for what is causing the outliers to be different.

Monte Carlo experiments (illustrated in Chapter 14) confirm that estimators like rreg
and qreg generally remain unbiased, with better-than-OLS efficiency, when applied to
heavy-tailed (outlier-prone) but symmetrical error distributions. The next section illustrates
what can happen when errors have asymmetrical distributions.

Asymmetrical Error Distributions

The variable e4 in robustl.dta has a skewed and outlier-filled distribution: e4 equals e/ (a
standard normal variable) raised to the fourth power, and then adjusted to have 0 mean. These
skewed errors, plus the linear relationship with x, define the variable y4 =10 + 2x + e4.
Regardless of an error distribution’s shape, OLS remains an unbiased estimator. Over the long
run, its estimates should center on the true parameter values.

regress y4 x

Source = 20
_____________ = 6.97
Model = 0.0166
Residual = 0.2792
_____________ = 0.2392
Total = 4.,7278

¥4 | Ccef. Std. Err. t P>t [95% Conf. Interval]
_____________ e e e e e e e e e o i S
x | 2.208388 .8362262 2.64 0.017 .4514157 3.96536

cons | 9.975681 1.062046 9.39 0.000 7.744406 12.20696

The same is not true for most robust estimators. Unless errors are symmetrical, the median
line fit by gqregq, or the biweight line fitby rreq, does not theoretically coincide with the
expected-y line estimated by regress. So long as the errors’ skew reflects only a small
fraction of their distribution, rreg mi ght exhibit little bias. But when the entire distribution
is skewed, as with e4, rreg will downwei ght mostly one side, resulting in noticeably biased
y-intercept estimates.
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Robust regresszi:n ss-imztes Number of obs = 20

F( 1, 18) = 1319.29

= Prob > F = 0.0000
4 Jz=f Std. Exrz t P>|t| [95% Conf. Interval]

! 1 252373 .0537433 36.32 0.000 1.839163 2.064984

cens T.277%69 .068251¢% 109.55 0.000 7.333278 7.620061

Although the rreg y-intercept in Figure 9.4 is too low, the slope remains parallel to the
OLS line and the true model. In fact, being less affected by outliers, the rreg slope (1.95)
is closer to the true slope (2) and has a much smaller standard error than that of regress.
This illustrates the tradeoff of using rreg or similar estimators with skewed errors: we risk
' getting biased estimates of the y-intercept, but can still expect unbiased and relatively precise
estimates of other regression coefficients. In many applications, such coefficients are
substantively more interesting than the y-intercept, making the tradeoff worthwhile. Moreover,
the robust 7 and F tests, unlike those of OLS, do not assume normal errors.

5 Figure 9.4
N mvmee  true model o
———  OLS regression (regress)
— —— robust regression (rreg) .
o H
o™
(52
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+ (]
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N2 A
+
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"
2 |
wn

0
Normal X

Robust Analysis of Variance

rreg can also perform robust analysis of variance or covariance once the model is recast in
, regression form. For illustration, consider the data on college faculty salaries in faculty.dta.

Contains data from C: data\faculty.dta

obs: 226 College faculty salaries
vars: 6 27 Jul 2005 09:32
I size: 2,938 (39.9% of memory free)
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stcrage ST alue
i zriablie name type for label variazble label
? byte %8.0¢g rank Academic rank
byte % 8.0¢ sex Gender (dummy variable)
byte 58.Cg Gender (effect coded)
§ byte %$8.0¢2 Assoc Professor (effect coded)
! byte %$8.0¢ Full Professor (effect coded)
pay float %9.0¢ Annual salary

Faculty salaries increase with rank. In this sample, men have higher average salaries:

table gender rank, contents (mean pay)

. Gender |
(dummy | Academic rank
variable) | Assist Assoc Fulil
__________ e S
Male | 29280 38622.22 52084.9
Female | 28711.04 3801%.J5 471390

An ordinary (OLS) analysis of variance indicates that both rank and gender significantly
affect salary. Their interaction is not significant.

anova pay rank gender rank*gender

8 Number of obs = 226 R-squared = 0.7305
y Root MSE = 5108.21 Adj R-squared = 0.7244
H Source | Partial SS df MS F Prob > F
13
3 | s e e e S
f;r Model | 1.5560e+10 5 3.1120e+09 119.26 0.0000
B |
}% rank | 7.£6124e+09 2 3.8062e+09 145.87 0.0000
¢ gender | 127361829 1 127361829 4.88 0.0282
rank*gender | 8§73%97720.1 2 43998860.1 1.69 0.1876
]
i
Residual ! 5.7406e+09 220 26093824.5
____________ B S e e S e ot et A

Teotal | 2.1300e+10 225 94668810.3

But salary is not normally distributed, and the senior-rank averages reflect the influence of
a few highly paid outliers. Suppose we want to check these results by performing a robust
analysis of variance. We need effect-coded versions of the rank and gender variables, which
this dataset also contains.

tabulate gender female

Gender |
(dummy | Gender (effect coded)
variable) | -1 1 | Total
___________ +__.________________-__._+______.-_—_
Male | 149 0 | 149
Female | 0 77 | 77
___________ +_______.___—_______—__—+——_——..—_——.
Total | 149 77 | 226
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tabulate rank assoc

Academic | Assoc Professor (effsct ccded)
rank | =1 o} 1| Total
___________ +_—_—-—-——-—-———-———-——--————-—-——+—_-____.___
Assist | 64 0 0 | 64
Assoc | 0 0 105 | 105
Full | 0 57 0 | 57
___________ +_____-___..-_---—---—-—-—-—-—----.—+_____..__-_
Total | 64 57 105 | 226
. tab rank full
Academic | Full Professcr (effect coded)
rank | -1 0 2 | Total
___________ +______________-_-_..-_-_-_-_—_-___+_.._.___.._.__.
Assist | 64 0 0 | 64
Assoc | 0 105 0 | 105
Full | 0 0 57 | 517
___________ +_—_—_——_—————————————————————————+————-—_—___
Total | 64 105 57 | 226

If faculty.dta did not already have these effect-coded variables (female, assoc, and full), we
could create them from gender and rank using a series of generate and replace
statements. We also need two interaction terms representing female associate professors and
female full professors:

- generate femassoc = female*assoc
generate femfull = female*full

Males and assistant professors are “omitted categories” in this example. Now we can
duplicate the previous ANOVA using regression:

- Teégress pay assoc full female femassoc femfull

df MS Number of obs = 226
—————————————————————— F{ 5; 220) = 119.26
i 5 3.1120e+09 Prob > F = 0.0000
6 220 26093824.5 R-squared = 0.7305
—————————————————————— Adj R-squared = 0.7244
fe+ll 225 94668810.3 Root MSE = 5108.2
Std. Err t P>|t| [95% Cenf. Interval]
assoc | -663.8995 $43.8499 -1.22 0.223 =1735, #22 407.9229
Fulr | 10652.92 783.92217 13.59 0.000 9107.957 12197.88
female | -1011.174 457.6938 =223 0.028 -1913.199 -109.1483
femassoc | 709.5864 543.8499 1.30 0.193 -362.2359 1781.409
femfull i ~1436.277 783.9227 =1 .83 0.068 -2981.236 108.6819
_cons | 38984.53 457.6938 85.18 0.000 38082.51 39886.56
. test assoc full
(1) assoc = 0.0
(2) full = 0.0
F( 2, 220) = 145.87
Prob > F = 0.0000
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test female

(1) female = 0.2
F({ 1, 222) = 4.88
Prob > 7 = 0.0282
test femassoc femfull
(1) femassoc = 1.0
( 2) femfull = C.0
BY 25 2z2) = 1.69
Prob > & = .187¢

regress followed by the appropriate test commands obtains exactly the same R *
and F test results that we found earlier using anova . Predicted values from this regression
equal the mean salaries.

predict predpayl
(option xb assumed; fitte

label variable predpayl "OLS predicted salary"

contents (mean predpayl)

table gender rank,

Predicted values (means). R . and F tests would also be the same regardless of which
categories we chosc to omit from the regression. Our “omitted categories,” males and assistant
professors. are not really absent. Their information is implied by the included categories: if
a faculty member is not female. he must be male. and so forth.

To perform a robust analysis of variance. apply rreg to this model:

i rreg pay assoc full female femassoc femfull, nolog
i Robust regression sstimates iumber of obs = 226
! F( 5, 220) = 138.25
; Prob > F = 0.0000
cay | Coef Std. =cor L o P>t} [95% Conf. Interval]
_____________ s s o e T e e S B R S e e e e e
ssscc | -313.6463 458.2.:38 20,69 0.492 -1218.588 587.2956
full | 9765.296 660.4248 14.79 0.000 8463.767 11066.83
female | -7£49.4949 385 5778 ~-1.94 0.053 -1509.394 10.40395
femassoc | 1977833 458.1588 0.43 0.666 -705.1587 1100.725
femfull | =913.348 660.4048 =1 .38 0.168 -2214.878 388.1815
_cons | 38331 .87 385.5778 99.41 0.000 37571.97 39091.77
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test assoc full

(1) assoc = 9.0
(2) full = 0.0
E({ 2, 220) = 182.67
Prob > F = 0.0000
test female
{ 2) female = 0.0
By I, 220) = 3.78
Prob > F = 0.0532
test femassoc femfull
{ 1) femassoc = 0.0
(2) femfull = 0.0
B 2, 220) = 2.16
Brob > F = 2.3144

rreg downweights several outliers, mainly highly-paid male full professors. To see the
robust means, again use predicted values:

pPredict predpay?2

(option xb assumed; fittesz values)
label variable predpay2 "Robust predicted salary"

table gender rank, contents (mean predpay?2)

Gender i

(dummy | Acader:: rank

variable) | Assist ~ssoc Full
i 28916.15 383:7.93 49760.01
| 28848.29 37471.51 46434.32

The male-female salary gap among assistant and full professors appears smaller if we use
robust means. It does not entirely vanish, however, and the gender gap among associate
professors slightly widens.

With effect coding and suitable interaction terms, regress can duplicate ANOVA
exactly. rreg can do parallel analyses, testing for differences among robust means instead
of ordinary means (as regress and anova do). Used in similar fashion, greg opens
the third possibility of testing for differences among medians. For comparison, here is a
quantile regression version of the faculty pay analysis:
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qreg pay assoc full female femassoc femfull, nolog

Median regression Number of obs = 226
Raw sum of deviations 1738010 (about 37360)

Min sum of deviations 798870 Pseudo R2 = 0.5404

pay | Coef. Std. Err. t P>|t| [95% Conf. Interval]

————————————— +________-_-________._—___-____-____________—-___—_—_—____—-____—_

assoc | -760 440.1693 =173 0.086 -1627.488 107.4881

full | 10335 615.7735 16.78 0.000 9121.43 11548.57

female | -623.3333 365.1262 -1.71 0.089 -1342.926 96.2594

femassoc | -156.6667 440.1693 -0.36. 0.722 -1024.155 710.8214

femfull | -691.6667 615.7735 -1.12 0.263 -1905.236 521.9031

cons | 38300 365.1262 104.90 0.000 37580.41 39019.5¢9

test assoc full

(1) assoc = 0.0
(2) full = 0.0

E( 2, 220) = 208.94
Prob > F = .0000

|
o

test female

(1) female = 0.0

I
N

Fi( 1, 220) .91
Prob > F = 0.0892

test femassoc femfull

¢ .19 femassoc = 0.0
(2) femfull = 0.0

|
5 |

F( 2, 220)
Prob > F

o
o

.2039

g e e

Predict predpay3
(option xb assumed; fitted values)

. label variable predpay3 "Median predicted salary"

table gender rank, contents (mean predpay3)

Gender |
(dummy | Academic rank
variable) | Assist Assoc Full
__________ N
Male | 28500 38320 49950
Female | 28950 36760 47320

oo —

Predicted values from this quantile regression closely resemble the median salaries in each
subgroup, as we can verify directly:

. e eSS e e Ao
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table gender rank, contents (median pay)

Gender |
(dummy | Academic rank
variable) | Assist Assoc Full
__________ +_______—__——_'_—__—__..__
Male | 28500 38320 49950
Female | 28950 36590 46530

qreg thus allows us to fit models analogous to N-way ANOVA or ANCOVA, but
involving .5 quantiles or approximate medians instead of the usual means. In theory, .5
quantiles and medians are the same. In practice, quantiles are approximated from actual sample
data values, whereas the median is calculated by averaging the two central values, ifa subgroup
contains an even number of observations. The sample median and .5 quantile approximations
then can be different, but in a way that does not much affect model interpretation.

Further rreg and greg Applications

Diagnostic statistics and plots (Chapter 7) and nonlinear transformations (Chapter 8) extend the
usefulness of robust procedures as they do in ordinary regression. With transformed variables,
rreg or qreg fitcurvilinearregressionmodels. rreg canalso robustly perform simpler
types of analysis. To obtain a 90% confidence interval for the mean of a single variable, y, we
could type either the usual confidence-interval command ci :

ci y, level(90)
Or, we could get exactly the same mean and interval through a regression with no x variables:
regress y, level(90)
Similarly, we can obtain robust mean with 90% confidence interval by typing
rreqg y, level(90)
greg could be used in the same way, but keep in mind the previous section’s note about how
a .5 quantile found by qreg might differ from a sample median. In any of these commands,
the level ( ) optionspecifies the desired degree of confidence. If we omit this option, Stata
automatically displays a 95% confidence interval.

To compare two means, analysts typically employ a two-sample ftest (t test) or one-way
analysis of variance (oneway or anova). Asseen earlier, we can perform equivalent tests
(vielding identical ¢ and F statistics) with regression, for example, by regressing the
measurement variable on adummy variable (here called group) representing the two categories:

regress y group
A robust version of this test results from typing the following command:

rreg y group

qreg performs median regression by default, but it is dctually a more general tool. It can
fit linear models for any quantile of y, not just the median (.5 quantile). For example,
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commands such as the following analyze how the first quartile (.25 quantile) of y changes with
x.

qreg y x, quant(.25)

Assuming constant error variance, the slopes of the .25 and .75 quantile lines should be roughly
the same. qreg thus could perform a check for heteroskedasticity or subtle kinds of
nonlinearity.

Robust Estimates of Variance — 1

Both rreg and qreg tend to perform better than OLS ( regress or anova ) in the
presence of outlier-prone, nonnormal errors. All of these procedures share the common
assumption that errors follow independent and identical distributions, however. If the
distributions of errors vary across x values or observations, then the standard errors calculated
by anova, regress, rreg, or qreg probably will understate the true sample-to-
sample variation, and yield unrealistically narrow confidence intervals.

regress and some othermodel fitting commands (althoughnot rreg or greg)have
an option that estimates standard errors without relying on the strong and sometimes
implausible assumptions of independent, identically distributed errors. This option uses an
approach derived independently by Huber, White, and others that is sometimes referred to as
a sandwich estimator of variance. The artificial dataset (robust2.dta) provides a first example.

Contains data from C:.data\robust2.dta

obs: 500 Robust regression examples 2
(artificial data)
vars: 12 17 Jul 2005 09:03
size: 24,500 (99.9% of memory free)
storage display value

variable name type format label variable label

X float %9.0g Standard normal x

e5 float %9.0g Standard normal errors

y5 float %9.0g ¥5 = 10 + 2*x + e5 (normal
i.i.d. exrrors)

e6 float %9.0g Contaminated normal errcrs:
95% N(0,1), 5% (N(0,10)

y6 float %9.0g y6 = 10 + 2*x + e6
(Contaminated normal errcrs)

e’ float %9.0g Centered chi-square(l) errcrs

y7 float %9.0g Y7 = 10 + 2*x + e7 (skewed
errors)

e8 float %9.0g Normal errocrs, variance
increases with x

y8 float %9.0g y8 = 10 + 2*x + eS8
(heteroskedasticity)

group byte %$9.0g

e9 float %9.0g Normal errors, variance

increases with x, mean &
variance increase with cluster
y9 float %9.0g y9 = 10 + 2*x + e9
(heteroskedasticity &
correlated errors)

Sorted by:




Robust Regression 257

When we regress y8 on x, we obtain a significant positive slope. A scatterplot shows strong

heteroskedasticity,

however (Figure 9.5). Variation around the regression line increases with

x. Because errors do not appear to be identically distributed at all values of x, the standard
errors, confidence intervals, and tests printed by regress are untrustworthy. rreg or
qreg would face the same problem.

regress y8 x

e e

Number of obs
F( 1, 498)
Prob > F = 0.0000

o
-t
w
w
.
O
(<))

R-squared = 0.2120
Adj R-squared = 0.2104
Root MSE 3.4639

SS df MS
1607.35658 1 1607.35658
5975.19162 498 11.9983767

7582.5482 499 15.1954874

Coef. Std. Err t
1.819032 ~1871612 11 .57
10.06642 .154919 64.98

0.000

0251 2.127813
2047 10.3708

___________________________________ e o e sy s s s e A e

Source
Model
Residual
Total
y8
X
cons
wn
N
=
Lo
n N
@
©
@
o
17
=)
0‘-
17}
=4
%
+ 2
<
-
o~
+
[=
-0
]
3
o
4

0
Standard normal x

Figure 9.5
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More credible standard errors and confidence intervals for this OLS regression can be
obtained by using the robust option:

regress y8 x, robust

Regression with robust standard err:-rs Number of obs = 500
’ F( 1, 498) = 83.80
Prob > F = 0.0000
R-squared = 0.2120
Rocot MSE = 3.4639

| Robusz
y8 | Coef Std; E=¥ z 230 % ) {95% Conf. Interwval]
_____________ S SRR ot e st s e e o e S e e e e B
x | 1.819032 .1987122 9 s 2.000 1.428614 2.209449
cons | 10.06642 .15618<¢ 64,2 2.000 9.759561 10.37328

Although the fitted model remains unchanged, the robust standard error for the slope is 27%
larger (.199 vs. .157) than its nonrobust counterpart. With the robust option, the regression
output does not show the usual ANOVA sums of squares because these no longer have their
customary interpretation.

The rationale underlying these robust standard-error estimates is explained in the User's
Guide. Briefly, we give up on the classical goal of estimating true population parameters (B’s)
for a model such as

¥ =PotPx,+e
Instead, we pursue the less ambitious goal of simply estimating the sample-to-sample variation
that our b coefficients might have, if we drew many random samples and applied OLS
repeatedly to calculate b values for a model such as

Yi=by+b,x+e,
We do not assume that these b estimates will converge on some “true” population parameter.
Confidence intervals formed using the robust standard errors therefore lack the classical
interpretation of having a certain likelihood (across repeated sampling) of containing the true
value of B. Rather, the robust confidence intervals have a certain likelihood (across repeated
sampling) of containing b, defined as the value upon which sample b estimates converge. Thus.
we pay for relaxing the identically-distributed-errors assumption by settling for a less
impressive conclusion.

Robust Estimates of Variance — 2

Another robust-variance option, cluster, allows us to relax the independent-errors
assumptionin a limited way, when errors are correlated within subgroups or clusters of the data.
The data in attract.dta describe an undergraduate social experiment that can be used for
illustration. In this experiment, 51 college students were asked to individually rate the
attractiveness, on a scale from 1 to 10, of photographs of unknown men and women. The
rating exercise was repeated by each participant, given the same photos shuffled in random
order, on four occasions during evening social events. Variable ratemale is the mean rating
each participant gave to all the male photos in one sitting, and ratefem is the mean rating given




Robust Regression 259

to female photos. gender records the participant’s (rater’s) own gender, and bac his or her
blood alcohol content at the time, measured by Breathalyzer.

Contains data from C:\dzta\attract.dta
obs: 204

Perceived attractiveness and
drinking (D. C. Hamilton 2003)
18 Jul 2005 17:27

vars: 8
size: 5,508 (£3.3% of memory free)
alue

variable name label
id

gender sex
bac
genbkac

relstat rel
drinkfrg

ratefem

Participant number

Participant gender (female)
Blood alchohol content
gender*bac interaction
Relationship status (single)
Days drinking in previous week
Rated attractiveness of females

ratemale Rated attractiveness of males

Sorted by: id

Although the data contain 204 observations, these represent only 51individual participants.
It seems reasonable to assume that disturbances (unmeasured influences on the ratings) were
correlated across the repetitions by each individual. Viewing each participant’s four rating
sessions as a cluster should vield more realistic standard error estimates. Adding the option
cluster (id) toaregression command, as seen below, obtains robust standard eITOrs across
clusters defined by id (individual participant).

regress ratefem bac gender genbac, cluster (id)

Regressicn with robust szzndard errors Number of obs = 204

F¢ 3, 50) = 778

Prob > F = 0.0002

R-squared = 0.1264

Number of clusters (id) = 31 Root MSE =. 1.1219
| Robust

rztefem CoeZ. Std. Err t P>|t| [95% Conf. Interval]

pac i 2.89¢67:<z 8543378 3.39 0.001 1.180753 4.612729

gender | -.72998%¢ .338309¢6 -2.16 0.036 -1.409504 -.0504741

genbac | .208053: 1.708146 0.12 0.904 -3.222859 3.638967

cons | €6.4867<7 .229689 28.24 0.000 6.025423 6.94811

Blood alcohol content (bac) has a significant positive effect: as bac goes up, predicted
attractiveness rating of female photos increases as well. Gender (female) has a negative effect:
female participants tended to rate female photos as somewhat less attractive (about .73 lower)
than male participants did. The interaction of gender and bac is weak (.21). The intercept- and
slope-dummy variable regression model, approximately

predicted ratefem = 6.49 + 2.90bac — .73gender +.21genbac
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can be reduced for male participants (gender=0) to
predicted ratefem = 6.49 + 2.90bac — (.73 x 0) + (.21 x 0 x bac)
=6.49 + 2.90bac
and for female participants (gender=1) 1o
predicted ratefem = 6.49 + 2.90bac — (.73 x 1)+ (.21 x 1 x bac)
=6.49 + 2.90bac - .73 + .21bac
=5.76 + 3.11bac

The slight difference between the effects of alcohol on males (2.90) and females (3.11) equals
the interaction coefficient, .21.

Attractiveness ratings for photographs of males were likewise positively affected by blood
alcohol content. Gender hasa stronger effect on the ratings ofmale photos: female participants
tended to give male photos much higher ratings than male participants did. For male-photo
ratings, the gender x bac interaction is substantial (—4.36), although it falls short of the .05
significance level.

regress ratemal bac gender genbac, cluster(id)

Regression with robust standard errors Number of obs = 201

B( 3, 50) = 10.3%6

Prob > F = 0.0000

R-squzred = 0.3516

Number of clustsrs (id) = 51 Root MSE = 1,3931
| Robust

ratemale | Coef. Std. Err. & Pt [95% Conf. Intervai]

_____________ o e o e e e T

bac | 4 1.88 0.066 -.2959004 8.788¢%¢&5

gender 2 3.38 g.020 1.53353 3.3529¢C2

genkac -4 ~3.022 0.228 =331:542217 2.8136%3

EoitE 2 13.43 G.G8G0 3.125049 4.131037

The regression equation for ratings of male photos by male participants is approximately
predicted ratemale = 3.63 < 4 25bac + (2.44 x 0) — (4.36 x 0 x bac)
=3.63 +4.25bac
and for rating of male photos by female participants,
predicted ratemale = 3.63 + 4.25bac + (2.44 x 1) - (4.36 x 1 x bac)
=6.07-0.11bac

The difference between the substantial alcohol effect on male participants (4.25) and the near-
zero alcohol effect on females (-0.11) equals the interaction coefficient, —4.36. In this sample,
males’ ratings of male photos increase steeply, and females’ ratings of male photos remain
virtually steady, as the rater’s bac increases.

Figure 9.6 visualizes these results in a graph. We see positive rating—bac relationships
across all subplots except for females rating males. The graphs also show other gender
differences, including higher bac values among male participants.
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to female photos. gender records the participant’s (rater’s) own gender, and bac his or her
blood alcohol content at the time, measured by Breathalyzer.

ta from C:\datalattract.dta

Y]

Contains d
obs:

204 Perceived attract:iveness and
drinking (D. C. Hamilton 2003)
vars: 8 18 Jul 2005 17:27
si : 5,508 (99.9% of memory free)
storage disrlay value
variable name type format label variable label
id byte £e. 2z Farticipant number
gender byte $9.°g sex Participant gender (female)
bac float %9.(g3 Blood alchohol content
genbac float &9.7g gender*bac interaction
relstat byte %9,0g rel Relationship status {single)
drinkfrq float %9.20g Days drinking in previcus week
ratefem float 8%9.7g Rated attractiveness of females
ratemzale float &9.23 Rated attractiveness of males

Although the data contain 204 observations, these representonly 51 individual participants.
It seems reasonable to assume that disturbances (unmeasured influences on the ratings) were
correlated across the repetitions by each individual. Viewing each participant’s four rating
sessions as a cluster should yield more realistic standard error estimates. Adding the option
cluster (id) toaregression command, as seen below, obtains robust standard €ITOrS across
clusters defined by id (individual participant).

regress ratefem bac gender genbac, cluster (id)

Regression with robust stansard errcrs Number of obs = 204

F 3, sC) = T:.75

Prob > F = 0.0002

R-sguared = 0.1264

Number of clusters (id) = 51 Root MSE = 1.1219
!

ratefem t P>t} [95% Conf. Interval]

bac 2. 3,39 2.001 1.180753 4.612729

gender | -.7299888 -2.16 0.036 -1.409504 -.0504741

genbac | .2080538 0.12 0.904 -3.222859 3.638967

cons | 5.488787 28.24 0.000 6.025423 6.94811

Blood alcohol content (bac) has a significant positive effect: as bac goes up, predicted
attractiveness rating of female photos increases as well. Gender (female) has a negative effect:
female participants tended to rate female photos as somewhat less attractive (about .73 lower)
than male participants did. The interaction of gender and bac is weak (.21). The intercept- and
slope-dummy variable regression model, approximately

predicted ratefem = 6.49 + 2.90bac — .13gender +.21genbac
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can be reduced for male participants (gender = 0) to
predicted ratefem = 6.49 + 2.90bac — (.73 x 0) + (.21 x 0 x bac)
=6.49 + 2.90bac
and for female participants (gender = 1) to
predicted ratefem = 6.49 + 2.90bac — (.73 x 1)+ (.21 x 1 x bac)
=6.49 + 2.90bac - .73 + .21bac
=5.76 + 3.11bac

The slight difference between the effects of alcohol on males (2.90) and females (3.11) equals
the interaction coefficient, .21.

Attractiveness ratings for photographs of males were likewise positively affected by blood
alcohol content. Gender hasa stronger effect on the ratings of male photos: female participants
tended to give male photos much higher ratings than male participants did. For male-photo
ratings, the gender x bac interaction is substantial (—4.36). although it falls short of the .05
significance level.

- regress ratemal bac gender genbac, cluster (id)

Regression with robust standard errors Number of obs = 201

B( 3 50) = 10.36

Prob > F = 0.0000

R-sguared = 0.3516

Number of clusters (id) = 51 Root MSE = 1.3931
| Robust

ratemale | Coef. Std. Err. t P>|t| [95% Conf. Interval]

————————————— +_______________________.._-_-___.._________..________-__..__-___..___

bac | 4.246042 2.261792 1.88 0.066 -.2963004 8.7889¢85

gender | 2.443216 .4529047 5.39 0.00¢0 1,53353 3.352502

genbac | -4.364301 3.573685 -1.22 0.228 -11.54227 2.813€¢3

cons | 3.628043 .2504253 14.45 0.000 3.125049 4.131037

The regression equation for ratings of male photos by male participants is approximately
predicted ratemale = 3.63 + 4.25bac + (2.44 x 0) — (4.36 ~ 0 x bac)
=3.63 + 4.25bac
and for rating of male photos by female participants,
predicted ratemale = 3.63 + 4.25bac + (2.44 x 1) - (4.36 x | x bac)
=6.07-0.11bac

The difference between the substantial alcohol effect on male participants (4.25) and the near-
zero alcohol effect on females (—0.11) equals the interaction coefficient,—4.36. In this sample,
males’ ratings of male photos increase steeply, and females’ ratings of male photos remain
virtually steady, as the rater’s bac increases.

Figure 9.6 visualizes these results in a graph. We see positive rating—bac relationships
across all subplots except for females rating males. The graphs also show other gender
differences, including higher bac values among male participants.
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OLS regression with robust standard errors, estimated by regress withthe robust
option, should not be confused with the robust regression estimated by rreg . Despite
similar-sounding names. the two procedures are unrelated, and solve different problems.
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Logistic Regression

The regression and ANOVA methods described in Chapters 5 through 9 require measured
dependent or y variables. Stata also offers a full range of techniques for modeling categorical,
ordinal, and censored dependent variables. A list of some relevant commands follows. For
more details on any of these, type help command .

binreg
blogit
bprobit
clogit
cloglog

cnreg

Binomial regression (generalized linear models).
Logit estimation with grouped (blocked) data.
Probit estimation with grouped (blocked) data.
Conditional fixed-effects logistic regression.
Complementary log-log estimation.

Censored-normal regression, assuming that y follows a Gaussian distribution but
is censored at a point that might vary from observation to observation.

constraint Defines, lists. and drops linear constraints.

dprobit
glm

glogit
gprobit
heckprob
hetprob

intreg

logistic

logit

mlogit
nlogit
ologit
oprobit
probit

Probit regression giving changes in probabilities instead of coefficients.
Generalized linear models. Includes option to model logistic, probit, or
complementary log-log links. Allows response variable to be binary or
proportional for grouped data.

Logit regression for grouped data.

Probit regression for grouped data.

Probit estimation with selection.

Heteroskedastic probit estimation.

Interval regression. where v is either point data, interval data, left-censored data,
or right-censored data.

Logistic regression, giving odds ratios.

Logistic regression — similar to logistic, but giving coefficients instead of
odds ratios.

Multinomial logistic regression, with polytomous y variable.

Nested logit estimation.

Logistic regression with ordinal y variable.

Probit regression with ordinal y variable.

Probit regression, with dichotomous y variable.
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rologit Rank-ordered logit model for rankings (also known as the Plackett—Luce model,
exploded logit model, or choice-based conjoint analysis).

scobit  Skewed probit estimation.

svy: logit Logistic regression with complex survey data. Survey ( svy ) versions of
many other categorical-variables modeling commands also exist.

tobit Tobit regression, assuming y follows a Gaussian distribution but is censored at a
known, fixed point (see cnreg for a more general version).

xtcloglog Random-effects and population-averaged cloglog models. Panel (xt) versions
of logit, probit, and population-averaged generalized linear models (see
help xtgee) also exist.

After most model-fitting commands, predict can calculate predicted values or

probabilities.  predict also obtains appropriate diagnostic statistics, such as those

described for logistic regression in Hosmer and Lemeshow (2000). Specific predict

options depend on the type of model just fitted. A different post-fitting command,
predictnl , obtains nonlinear predictions and their confidence intervals (see help

predictnl).

Examples of several of these commands appear in the next section. Most of the methods
for modeling categorical dependent variables can be found under the following menus:
Statistics — Binary outcomes
Statistics — Ordinal outcomes
Statistics — Categorical outcomes
Statistics — Generalized linear models (GLM)

Statistics — Cross-sectional time series
Statistics — Linear regression and related — Censored regression

After the Example Commands section below, the remainder of this chapter concentrates on
an important family of methods called logit or logistic regression. We review basic logit
methods for dichotomous, ordinal, and polytomous dependent variables.

Example Commands

logistic y x1 x2 x3
Performs logistic regression of {0,1} variable y on predictors x/, x2, and x3. Predictor
variable effects are reported as odds ratios. A closely related command,
logit y x1 x2 x3
performs essentially the same analysis, but reports effects as logit regression coefficients.
The underlying models fit by logistic and logit are the same, so subsequent

predictions or diagnostic tests will be identical.
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1£ie
Presents a Pearson chi-squared goodness-of-fit test for the fitted logistic model: observed
versus expected frequencies of y = I, using cells defined by the covariate (x-variable)
patterns. When a large number of x patterns exist, we might want to group them according
to estimated probabilities. 1fit, group(10) would perform the test with 10
approximately equal-size groups.

lstat
Presents classification statistics and classification table. lstat , lroc, and lsens
(see below) are particularly useful when the point of analysis is classification. These
commands all refer to the previously-fit logistic model.

lroc

Graphs the receiver operating characteristic (ROC) curve, and calculates area under the
curve.

lsens
Graphs both sensitivity and specificity versus the probability cutoff,

Predict phat
Generates a new variable (here arbitrarily named phat) equal to predicted probabilities that
¥ =1 based on the most recent logistic model.

pPredict dx2, dx2
Generates a new variable (arbitrarily named dX?2), the diagnostic statistic measuring
change in Pearson chi-squared, from the most recent logistic analysis.

mlogit y x1 x2 x3, base(3) rrr nolog
Performs multinomial logistic regression of multiple-category variable y on three x
variables. Option base (3) specifies ¥ =3 as the base category for comparison; rrr
calls for relative risk ratios instead of regression coefficients; and nolog suppresses
display of the log likelihood on each iteration.

predict P2, outcome (2)
Generates a new variable (arbitrarily named P2) representing the predicted probability that
) =2, based on the most recent mlogit analysis.

glm success x1 x2 x3, family(binomial trials) eform

Performs a logistic regression via generalized linear modeling using tabulated rather than
individual-observation data. The variable success gives the number of times that the
outcome of interest occurred, and #rials gives the number of times it could have occurred
for each combination of the predictors x/,x2, and x3. That is, success / trials would equal
the proportion of times that an outcome such as “patient recovers” occurred. The eform
option asks for results in the form of odds ratios (“exponentiated form™) rather than logit
coefficients.

cnreg y xl1 x2 x3, censored(cen)
Performs censored-normal regression of measurement variable yon three predictorsx/, x2,
and x3. If an observation’s true y value is unknown due to left or right censoring, it is
replaced for this regression by the nearest » value at which censoring occurs. The
censoring variable cen is a {~1,0,1} indicator of whether each observation’s value of y has
been left censored, not censored, or right censored.

Ws‘“ﬁ“‘ %‘.1&»&&“4 "
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Space Shuttle Data

Our main example for this chapter, shuttle.dta, involves data covering the first 25 flights of the
U.S. space shuttle. These data contain evidence that, if properly analyzed, might have
persuaded NASA officials not to launch Challenger on its last, fatal flight in 1985 (that was
25th shuttle flight, designated STS 51-L). The data are drawn from the Report of the Presiden-
tial Commission on the Space Shuttle Challenger Accident (1986) and from Tufte (1997).
Tufte’s book contains an excellent discussion about data and analytical issues. His comments
regarding specific shuttle flights are included as a string variable in these data.

Contains data from C:\data\shuttle.dta

obs: 25 First 25 space shuttle flights
vars: 8 20 Jul 2005 10:40

size: 2,675 (99.9% of memory free)

storage display value

variable name type format label variable label

flight byte  %8.0g flbl Flight
month byte %$8.0g Month of launch
day byte %$8.0g Day of launch
year int %8.0g Year of launch
distress byte %8.0g dlbl Thermal distress incidents
temp byte $8.0g Joint temperature, degrees T
damage byte %$9.0g Damage severity index (Tufts

1997)

comments str55 #&55s Comments (Tufte 1997)
Sorted by:

list flight-temp, sepby (year)

| flight month day year date distress temp |
o e e e e !

1. | STS-1 4 12 1981 1772 none 66 |
2. | STS=-2 11 12 1981 7986 1l or 2 70
o e e e e o e e e e R S e e e e |
3. | STS-3 3 22 1982 8116 none 69 |
4. | STS-4 6 27 1982 8213 8C
S 1l STS-5 11 11 1982 8350 none 68
b e e e e e e e e e e e e e S S e e e i
6. | STS-6 4 4 1983 8494 1 or 2 67 |
7 | STS-7 6 18 1983 8569 none 72 |
8. | STS-8 8 30 1983 8642 none 73
9 | STS-9 11 28 1983 8732 none 70 |
| = e |
10. | sTs 41-&8 2 3 1984 8799 1 or 2 57
11. | 8TS_41-cC 4 6 1984 8862 3 plus €3 |
12. | STs_41-cC 8 30 1984 9008 3 plus 70
13. | STS_41-G 10 L) 1984 9044 none 78 |
14. | sTs_S51-a 11 8 1984 9078 none 67 |
e e i e e e B B S i i i |
15. | sTS_51-C 1 24 1985 9195 3 plus 53 |
l16. | STS_51-D 4 12 1985 9233 3 plus 67 |
17. | sTs_51-B 4 29 1985 9250 3 plus 75 |
18. | STS_S51-G 6 17 1985 9299 3 plus 70 |
19. | sTS_S1-F 7 29 1985 9341 1 or 2 81 |
20. | STS_51-1I 8 27 1985 9370 1 ior 2 76 |
2 | STS_51-J 10 3 1985 9407 none 79 |
22. | STS_61-a 10 30 1985 9434 3 plus 75



266  Statistics with Stata

23. | STS_61-B 11 26 1985 9461 1 or 2 76 |
b e e e e e e |
24. | STS_61-C 1 12 1986 9508 3 plus 58 |
25. | STS_51-L 1 28 1986 9524 ¢ 31 |
e e +

This chapter examines three of the shuttle.dta variables:

distress  The number of “thermal distress incidents,” in which hot gas blow-through or
charring damaged joint seals of a flight’s booster rockets. Burn-through of a
booster joint seal precipitated the Challenger disaster. Many previous flights had
experienced less severe damage, so the Joint-seals were known to be a source of
possible danger.

temp The calculated joint temperature at launch time, in degrees Fahrenheit.
Temperature depends largely on weather. Rubber O-rings sealing the booster
rocket joints become less flexible when cold.

date Date, measured in days elapsed since January 1, 1960 (an arbitrary starting point).
date is generated from the month, day, and year of launch using the mdy (month-
day-year to elapsed time; see help dates) function:

generate date = mdy(month, day, year)
label variable date "Date (days since 1/1/60)"

Launch date matters because several changes over the course of the shuttle program might
have made it riskier. Booster rocket walls were thinned to save weight and increase payloads,
and joint seals were subjected to higher-pressure testing. Furthermore, the reusable shuttle
hardware was aging. So we might ask, did the probability of booster Jjoint damage (one or more
distress incidents) increase with launch date?

distress is a labeled numeric variable:

tabulate distress

Thermal |

distress |

incidents | Freq Percent Cum

____________ +______..-__..__._—_—_—.._____—_—_—_————

none | 9 39.13 39.13

X or 2 | 6 26.09 65.22
3 plus | 8 34.78 100.00

____________ +_._________________-__-_—..__—_—_--——
Total | 23 100.00

Ordinarily, tabulate displays the labels, but the nolabel option reveals that the
underlying numerical codes are 0 = “none”, 1 =“l or 2”, and 2 =“3 plus.”

tabulate distress, nolabel

Thermal |

distress |

incidents | Freq Percent Cum

____________ +__________________—_—-_-—_-_—_—————
0 | 9 39.13 39, 1.3
L ] 6 26.09 65.22
2 | 8 34.78 100.00

____________ T

Total | 23 100.00
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We can use these codes to create a new dummy variable. any, coded 0 for no distress and 1 for
one or more distress incidents:

generate any = distress
(2 missing values generated)

- replace any = 1 if distress ==
(8 real changes mzde)

label variable any "Any thermal distress"

To see what this accomplished,

tabulate distress any

Thermal | Any zhermal distress
distress |
incidents | 0 10 Toteal
___________ e R e e e o o i i
none | 9 0 | S
1l oxr 2 | 0 6 | £
3 plus | 0 g | g
___________ o i A S A Rt e i
Total | S 14 | 23

Logistic regression models how a {0, 1} dichotomy such as any depends on one or more x
variables. The syntax of logit resembles that of regress and most other model-fitting
commands, with the dependent variable listed first.

logit any date, coef

Iteration 0: lzz likelihood = -15.3%4543
Iteration 1: lcz likelihood = =-13.01923
Iteration 2: lcz likelihood = -12.9%1146
Iteration 3: 12z likelihocod = -12.991096

Logit estimates

LU | |

Log likelihood = -2.2.%310%s

The logit iterative estimation procedure maximizes the logarithm of the likelihood
function, shown at the output’s top. At iteration 0, the log likelihood describes the fit of a
model including only the constant. The last log likelihood describes the fit of the final model,

L =-18.13116 +.0020907date [10.1]
where L represents the predicted logit, or log odds, of any distress incidents:
L =In[P(any=1)/P(any = 0)] [10.2]

An overall x’ test at the upper right evaluates the null hypothesis that all coefficients in the
model, except the constant, equal zero,
¥ =-2(n¥,-Ing,) ' [10.3]
where In & is the initial or iteration 0 (model with constant only) log likelihood, and In &, is
the final iteration’s log likelihood. o I
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x> =-2[-15.394543 — (-12.991096)]
=4.81
The probability of a greater x2, with 1 degree of freedom (the difference in complexity between
initial and final models), is low enough (.0283) to reject the null hypothesis in this example.
Consequently, date does have a significant effect.

Less accurate, though convenient, tests are provided by the asymptotic z (standard normal)
statistics displayed with logit results. With one predictor variable, that predictor’s z
statistic and the overall ¥ statistic test equivalent hypotheses, analogous to the usual 7 and F
statistics in simple OLS regression. Unlike their OLS counterparts, the logit z approximation
and x’ tests sometimes disagree (they do here). The ¥* test has more general validity.

Like Stata’s other maximum-likelihood estimation procedures, logit displaysapseudo
R* with its output:

pseudoR? =1-In¥,/In<, [10.4]
For this example,

I

1 - (=12.991096) / (~15.394543)
1561
Although they provide a quick way to describe or compare the fit of different models for the
same dependent variable, pseudo R ? statistics lack the straightforward explained-variance
interpretation of true R 2 in OLS regression.

After logit,the predict command (with no options) obtains predicted probabilities,

Phat=1/(1+e ") [10.5]

Graphed against date, these probabilities follow an S-shaped logistic curve as seen in Fi gure
10.1.

pseudo R?

Il
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predict Phat
label variable Phat "Predicted P(distress >= 1)"
graph twoway connected Phat date, sort

Figure 10.1

.6 .8

Predicted P(distress >= 1)
4

7500 8000 9500

8500
Date (days since 1/1/60)

The coefficient givenby logit (.0020907) describes date’s effect on the logit or log
odds that any thermal distress incidents occur. Each additional day increases the predicted log
odds of thermal distress by .0020907. Equivalently, we could say that each additional day
multiplies predicted odds of thermal distress by e “***”” = 1.0020929; each 100 days therefore
multiplies the odds by (¢ ~™7) '™ = 1.23. (e = 2.71828, the base number for natural
logarithms.) Stata can make these calculations utilizing the _b[varname] coefficients stored
after any estimation:

display exp (_b[date])

1 e £34332Y

Or. we could simply include an or (odds ratio) option on the logit command line. An
alternative way to obtain odds ratios employs the logistic commanddescribed in the next
section. logistic fits exactly the same model as logit , but its default output table
displays odds ratios rather than coefficients.
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Using Logistic Regression

Here is the same regression seen earlier, but using logistic instead of logit:

logistic any date

Logit estimates Number of obs = 23
LR chi2 (1) = 4.82

Prob > chi2 = 0.02gz

Log likelihood = -12.%:233%6 Pseudo R2 = 0.1561
any Odds Rzz=:12 Std. Err z P>lz| [95% Conf. Interval

date 1.002Z323 0010725 1:95 0.051 .9999931 1.004187

Note the identical log likelihoods and ” statistics. Instead of coefficients (b), logistic
displays odds ratios (e”). The numbers in the “Odds Ratio” column ofthe logistic output
are amounts by which the odds favoring y = 1 are multiplied, with each 1-unit increase in that
x variable (if other x variables’ values stay the same).

After fitting a model, we can obtain a classification table and related statistics by typing

lstat

———————— SEUE e
Classified | E =B j Total
___________ S et o R S B A S 1 e o e s
| 12 4 16
| 2 g 7
___________ e
Total | 14 38
Classified + if prediz=zz Zr >, »>=
True D defined as any != _
Sensitivity BER Y, Dy S5.71%
Specificity Br{ =:%g 2858
Positive predictive val-:= Bri §° = T T
Negative prediczciv s BZ{*3%; = L5
False + rate Pr{ +~0; 29443
False - rate Pl =l B 14.23%
False + rate Pr (=B 4) 25,00%
False - rate Pr( Dl =) 28.57%
Correctly clzssified 73.91%

By default, 1stat employsa probability of .5 as its cutoff (although we can change this
by adding a cutoff( ) option). Symbols in the classification table have the following
meanings:

D The event of interest did occur (that is, y=1) for that observation. Inthis example,

D indicates that thermal distress occurred.

~D The event of interest did not occur (that is, y = 0) for that observation. In this
example, ~D corresponds to flights-having-no thermal distress.
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+ The model’s predicted probability is greater than or equal to the cutoff point.
Since we used the default cutoff, + here indicates that the model predicts a .5 or
higher probability of thermal distress.
- The predicted probability is less than the cutoff. Here, - means a predicted
probability of thermal distress below .5.
Thus for 12 flights, classifications are accurate in the sense that the model estimated at least
a.5 probability of thermal distress, and distress did in fact occur. For § other flights, the model
predicted less than a .5 probability, and distress did not occur. The overall “correctly
classified” rate is therefore 12+ 5= 17 out of 23, or 73.91%. The table also gives conditional
probabilities such as “sensitivity” or the percentage of observations with P > .5 given that
thermal distress occurred (12 out of 14 or 85.71%).

After logistic or logit, the followup command predict calculates various
prediction and diagnostic statistics. Discussion of the diagnostic statistics can be found in
Hosmer and Lemeshow (2000).

predict newvar Predicted probability that y = 1

predict newvar, xb Linear prediction (predicted log odds that y=1)
predict newvar, stdp Standard error of the linear prediction

pPredict newvar, dbeta AB influence statistic, analogous to Cook’s D
predict newvar, deviance  Deviance residual for jth x pattern, d;
predict newvar, dx2 Change in Pearson ¥, written as Ay? or Ay,
predict newvar, ddeviance Change in deviance x?, written as AD or Ay,
predict newvar, hat Leverage of the jth x pattern, h;

predict newvar, number Assigns numbers to x patterns, j =1,2,3 ...J
predict newvar, resid Pearson residual for jth x pattern, Py

predict newvar, rstandard Standardized Pearson residual

Statistics obtained by the dbeta, dx2, ddeviance , and hat options do not
measure the influence of individual observations, as their counterparts in ordinary regression
do. Rather, these statistics measure the influence of “covariate patterns”; that is, the
consequences of dropping all observations with that particular combination of x values. See
Hosmer and Lemeshow (2000) for details. A later section of this chapter shows these statistics
in use.

Does booster joint temperature also affect the probability of any distress incidents? We
could investigate by including temp as a second predictor variable .
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logistic any date temp

Logit estimates Number of obs = 23
LR chi2(2) = 8.09

Prob > chi2 = 0.0175

Log likelihcod = -11,32--48 ) Pseudo R2 = 0.2627
any | Odds Rat:o Std. BEY z Pz | [95% Conf Interval]

date | 1.00z:=7 +0013675 Z 17 0.030 1.000293 1.005653

temp | 8408z 2 .0987887 -1.48 0.140 .6678848 1.058561

The classification table indicates that including temperature as a predictor improved our
correct classification rate to 78.26%.

lstat

Logistic medel for any

———————— -Tue ----—-=-

Classified | D ~Z Total

___________ e e e

| 12 2 | 15

= | 2 £ | g

___________ R

Total H 14 s | 23
lassified + if predictzs BriT) >= 5

s —
ue D defined as zny != 0§

Se Pr( +| D) 85.71%
Sp Pr( -=|=~D) 66.67%
Po al:= Pr( D| +) 80.00%
Ne Tue cr{~D| =) 75.00%
False + rate fzo:-r 2l +]~D) 33.33%
False - rate fcr gE =1 D) 14.29%
False - rare for + Pr(~Di +) 20.00%
False - rate for - =2{ Bl =) 25.00%
Correctly classified 78.26%

According to the fitted model, each 1-degree increase in joint temperature multiplies the
odds of booster joint damage by .84 (in other words, each 1-degree warming reduces the odds
of damage by about 16%). Although this effect seems strong enough to cause concern, the
asymptotic z test says that it is not statistically significant (z = —1.476, P = .140). A more
definitive test. however, employs the likelihood-ratio x’. The lrtest command compares
nested models estimated by maximum likelihood. First, estimate a “full” model containing all
variables of interest, as done above with the logistic any date temp command.
Next, type an estimates store command, giving a name (such as full) to identify this
first model:

estimates store full

Now estimate a reduced model, including only a subset of the x variables from the full
model. (Such reduced models are said to be “nested.”) Finally,a commandsuchas lrtest

.
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-
full requests a test of the nested model against the previously stored fir// model. For example
(using the quietly prefix, because we already saw this output once),

- Quietly logistic any date
. lrtest full

3.28
0.0701

likelihood-ratio test LR chi2 (1)
(Assumption: . nested in full) Prob > chi2

This lrtest command tests the recent (presumably nested) model against the model
previously saved by estimates store . It employs a general test statistic for nested
maximum-likelihood models, 3

X’ =-2(ng,-In¥,) [10.6]
where In &, is the log likelihood for the first model (with all x variables), and In &  is the log
likelihood for the second model (with a subset of those x variables). Compare the resulting test
statistic to a x* distribution with degrees of freedom equal to the difference in complexity
(number of x variables dropped) between models 0 and 1. Type help lrtest for more
about this command, which works with any of Stata’s maximum-likelihood estimation
procedures (logit, mlogit, stcox,and many others). The overall y * statistic routinely
given by logit or logistic output (equation [10.3]) is a special case of [10.6].

The previous lrtest example performed this calculation:

x° =-2[-12.991096 — (-1 1.350748)]

=3.28
with 1 degree of freedom, yielding P = .0701; the effect of temp is significant at o.'= .10.
Given the small sample and fatal consequences of a Type Il error, & =.10 seems a more prudent
cutoff than the usual o = .05.

Conditional Effect Plots

Conditional effect plots help in understanding what a logistic model implies aboutprobabilities.
The idea behind such plotsis to draw a curve showing how the model’s prediction of y changes
as a function of one x variable, while holding all other x variables constant at chosen values
such as their means, quartiles, or extremes. For example, we could find the predicted
probability of any thermal distress incidents as a function of temp, holding date constant at its
25th percentile. The 25th percentile of date, found by summarize date, detail 5 18
8569 — that is, June 18, 1983.

- quietly logit any date temp

. generate L1 = _b[_cons] + _b[date]*8569 + _bltemp] *temp

- generate Phatl = 1/(1 + exp(-L1))

. label variable Phatl "P(distress >= 1 | date = 8569) "

L1 is the predicted logit, and Phatl equals the corresponding predicted probability that distress

> 1, calculated according to equation[10.5]. Similar steps find the predicted probability of any
distress with date fixed at its 75th percentile (9341, or July 29, 1985):
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generate L2 = _b[_cons] + _b[date]*9341 + _b[temp]*temp
generate Phat2 = 1/(1 + exp (-L2))
label variable Phat2 "P(distress >= 1 | date = 9341) "

We can now graph the relationship between temp and the probability of any distress, for
the two levels of date, as shown in Fi gure 10.2. Using median splines with many vertical bands
(graph twoway mspline, bands (50)) produces smooth curves in this figure,
approximating the smooth logistic functions.

graph twoway mspline Phatl temp, bands (50)
11 mspline Phat?2 temp, bands (50)°
|1 , ytitle("Probability of thermal distress")
ylabel(0(.2)1, grid) xlabel(, grid)
legend(label (1l "June 1983") label (2 "July 1985")
rows (2) position(7) ring(0))

Figure 10.2
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Amongearlier flights (date = 8569, left curve), the probability of thermal distress goes from
very low, at around 80° F, to near 1, below 50° F. Among later flights (date = 9341, right
curve), however, the probability of any distress exceeds .5 even in warm weather, and climbs
toward 1 on flights below 70° F. Note that Challenger’s launch temperature, 31° F, places it
at top left in Figure 10.2. This analysis predicts almost certain booster joint damage.

Diagnostic Statistics and Plots

As mentioned earlier, the logistic regression influence and diagnostic statistics obtained by
Predict refer not to individual observations, as do the OLS regression diagnostics of
Chapter 7. Rather, logistic diagnostics refer to x patterns. With the space shuttle data,
however, each x pattern is unique — no two flights share the same combination of date and
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temp (naturally, because no two were launched the same day). Before using predict , we
quietly refit the recent model, to be sure that model is what we think:
- quietly logistic any date temp

predict Phat3
(option p assumed; Pr(any))

. label variable Phat3 "Predicted probability"

predict dx2, dx2
(2 missing values generated)

label variable dx2 "Change in Pearson chi-squared"

predict dB, dbeta
(2 missing values generated)

label variable dB "Influence"

predict dD, ddeviance
(2 missing values generated)

label variable dD "Change in deviance"

Hosmer and Lemeshow (2000) suggest plots that help in reading these diagnostics. To
graph change in Pearson ’ versus probability of distress (Figure 10.3), type:

graph twoway scatter dX2 Phat3

- Figure 10.3
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Two poorly fit x patterns, at upper right and left, stand out. We can identify these two
flights (STS-2 and STS 51-A) if we include marker labels in the plot, as seen in Figure 10.4.
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graph twoway scatter dx2 Phat3, mlabel (flight) mlabsize(small)

o | Figure 10.4
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list flight any date temp dX2 Phat3 if dx2 > 5

e o o 8 0 e e o +

| flight any date temp dx2 Phat3 |
e A 2 e e e 555 S A |

2. | STS-2 1 7986 70 9.630337 .1091805 |
4. | STS-4 . 8213 80 . .0407113 |
14. | STS 51-a 0 9078 67 5.899742 .8400974 |
25. | STS 51-L . 9524 31 . .9999012 |
e e e e e e e e e +

Flight STS 51-A experienced no thermal distress, despite a late launch date and cool
temperature (see Figure 10.2). The model predicts a .84 probability of distress for this flight.
All points along the up-to-right curve in F igure 10.4 have any = 0, meaning no thermal distress.
Atop the up-to-left (any= 1) curve, flight STS-2 experienced thermal distress despite being one
of the earliest flights, and launched in slightly milder weather. The model predicts only a .109
probability of distress. (Because Stata considers missing values as “high” numbers, it lists the
two missing-values flights, including Challenger, among those with dX2 > 5.)

Similar findings result from plotting D versus predicted probability, as seen in Figure 10.5.
Again, flights STS-2 (top left) and STS 51-A (top right) stand out as poorly fit. Figure 10.5
illustrates a variation on the labeled-marker scatterplot. Instead of putting the flight-number
labels near the markers, as done earlier in F igure 10.4, we make the markers themselves
invisible and place labels where the markers would have been in Figure 10.5.
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graph twoway scatter dD Phat3, msymbol (i) mlabposition (0)
mlabel (flight) mlabsize (small)
Figure 10.5
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l dB measures an x pattern’s influence in logistic regression, as Cook’s D measures an
individual observation’s influence in OLS. For a logistic-regression analogue to the OLS
diagnostic plot in Figure 7.7, we can make the plotting symbols proportional to influence as

l done in Figure 10.6. Figure 10.6 reveals that the two worst-fit observations are also the most
influential.

graph twoway scatter dD Phat3 [aweight = dB], msymbol (oh)

Figure 10.6
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Poorly fit and influential observations deserve special attention because they both
contradict the main pattern of the data and pull model estimates in their contrary direction. Of
course, simply removing such outliers allows a “better fit” with the remaining data — but this
is circular reasoning. A more thoughtful reaction would be to investigate what makes the
outliers unusual. Why did shuttle flight STS-2, but not STS 51-A, experience booster joint
damage? Seeking an answer might lead investigators to previously overlooked variables or to
otherwise respecify the model.

Logistic Regression with Ordered-Cafegory y

logit and logistic fit only models that have two-category {0,1} y variables. We need
other methods for models in which Vv takes on more than two categories. For example,

ologit  Orderedlogistic regression, where v is an ordinal (ordered-category) variable. The

numerical values representing the categories do not matter, except that hi gher
numbers mean “more.” For example, the y categories might be {1 = “poor,” 2 =
f' ; “fair,” 3 = “excellent™}.

mlogit Multinomial logistic regression, where » has multiple but unordered categories
5: such as {1 = “Democrat.” 2 = “Republican,” 3 = “undeclared”}.
%f Ifyis {0,1}, logit (or logistic), ologit,and mlogit all produce essentially

the same estimates.

e
AN 3% Sce

We earlier simplified the three-category ordinal variable distress into a dichotomy, any.
logit and logistic require 10,1} dependent variables. ologit , on the other hand,
is designed for ordinal variables like distress that have more than two categories. The
numerical codes representing these categories do not matter, so long as higher numerical values
mean “more” of whatever is being measured. Recall that distress has categories 0 = “none.”
1 =%l or2,” and 2 = “3 plus” incidents of booster-joint distress.

Ordered logistic regression indicates that date and temp both affect distress, with the same
signs (positive for date, negative for temp) seen in our earlier analyses:

ologit distress date temp, nolog

Ordered logit estimates Number of obs = 23
LR chi2(2) = 3
Prob > chi2 =
Log likelihood = -18.79706 Pseudo R2 =
distress | Coef sts. Exy z P>z} [95% Conf. Interval
_____________ o e e T S S o S B S B e
date | .003286 .0222662 2.60 0.009 .0008043
temp | -.1733752 .05:4473 -2.08 0.038 -.336929 -.0038
_____________ e o o i S R e st e
cutl | 16.42813 9.:254813 (Ancillary parameters)
cut2 | 18.12227 9.722293

Likelihood-ratio tests are more accurate than the asymptotic z tests shown. First, have
estimates store preserve in memory the results from the full model (with two
predictors) just estimated. Arbitrarily, we can name this model 4.

v._.a\% _— . i i i
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estimates store A

Next, fit a simpler model without temp, store its results as model B, and ask for a likelihood-
ratio test of whether the fitof reduced model B differs significantly from that of the full model,

model A4:
quietly ologit distress date
estimates store B
lrtest B A

612
0.0133

likelihood-ratio test ' LR chi2 (1)
(=ssumption: B nested in i) Prob > chi?2

mwou

The lrtest outputnotes its assumption that model B is nested in model 4 — meaning
that the parameters estimated in B are a subset of those in A, and that both models are estimated
from the same pool of observations (which can be tricky when the data contain missing values).
This likelihood-ratio test indicates that B ’s fit is significantly poorer. Because the presence of
temp as a predictor in model 4 is the only difference, the likelihood-ratio test thus informs us
that femp’s contribution is significant. Similar steps find that date also has a significant effect.

quietly ologit distress temp
estimates store C

lrtest C A

10
1

likelihood-ratio :est LR chi2 (1)
(~ssumption: C nested i 3) Prob > chi2 0.0¢C

-

w W

The estimates store and lrtest commands provide flexible tools for comparing
nested maximum-likelihood models. Type help 1lrtest and help estimates for
details, including more advanced options.

The ordered-logit model estimates a score, S, as a linear function of date and temp:

§ =.003286date - .1733752temp
Predicted probabilities depend on the value of S, plus a logistically distributed disturbance .
relative to the estimated cut points:
P(distress=“none”) = P(S§+u < _cutl)
P(distress=*“1 or 2) P(_cutl <S+u < _cut2) P(16.42813 < S+u < 18.12227)
P(distress="3 plus™) P(_cut2 < S+u) P(18.12227 < S+u)

After ologit, predict calculates predicted probabilities for each category of the
dependent variable. We supply predict with names for these probabilities. For example:
none could denote the probability of no distress incidents (first category of distress); onetwo
the probability of 1 or 2 incidents (second category of distress); and threeplus the probability
of 3 or more incidents (third and last category of distress):

P(S+u < 16.42813)

quietly ologit distress date temp

Predict none onetwo threeplus
(option p assumed; predicted probabilities)

This creates three new variables:
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describe none onetwo threeplus

storage display value
variable name type format label variable label
none float %9.0g : Pr (distress==0)
onetwo float %9.0g Pr(distress==1)
threeplus float %9.0g Pr(distress==2)

Predicted probabilities for Challenger’s last flight, the 25th in these data, are unsettling:

list flight none onetwo threeplus if flight == 25
B e B s o im0 s B A D e e +
| flight none crstwo threep~s |
o e e e L I
25. | STS_51-L .0000754 .0C23346 99959 |
P e e e e e e s s S e +

Our model, based on the analysis of 23 pre-Challenger shuttle flights, predicts little chance (P
=.000075) of Challenger experiencing no booster Joint damage, a scarcely greater likelihood
of one or two incidents (P = .0003), but virtual certainty (P = .9996) of three or more damage
incidents.

See Long (1997) or Hosmer and Lemeshow (2000) for more on ordered logistic regression
and related techniques. The Base Reference Manual explains Stata’s implementation.

Multinomial Logistic Regression

When the dependent variable’s categories have no natural ordering, we resort to multinomial
logistic regression, also called polytomous logistic regression. The mlogit commandmakes
this straightforward. If y has only two categories, mlogit fits the same model as
logistic. Otherwise, though, an mlogit modelis more complex. This section presents
an extended example interpreting mlogit results, using data (NWarctic.dta) from a survey
of high school students in Alaska’s Northwest Arctic borough (Hamilton and Seyfrit 1993).

Contains data from C:\data\NWarctic.dta

obs: 259 NW Arctic high school students
(Hamilton & Seyfrit 1993)
vars: 3 20 Jul 2005 10:40
size: 2,590 (99.9% of memcry free)
storage display value
variable name type format label variable label
life byte $8.0g migrate Expect to live most of life?
ties float %9.0g Social ties to community scale
kotz byte %$8.0g kotz Live in Kotzebue or smaller
village?

Variable /ife indicates where students say they expect to live most of the rest of their lives:
in the same region (Northwest Arctic), elsewhere in Alaska, or outside of Alaska:

tabulate 1life, plot




Expect to
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|
1ive mcst
of life? | Freqg.
____________ A 8 e G S M 0 ot S 5 e e
sama | 92 jewww A R R T T T L T
. KX H KK F XX K I T Tk h Kk ok ok ok k ok ok k * *
other AK i 120 | =x=>x>xsxxxx * - * ok ok Tk ok kok ok ok ok ok ok ok kX ok ok ok ok
leave AK | 47 X xx kR kA r kv v v
____________ s s i 5 S 0 05 e 5 i S
Total | 25¢

Kotzebue (population near 3,000) is the Northwest Arctic’s regional hub and largest city.
More than a third of these students live in Kotzebue. The rest live in smaller villages of 200
to 700 people. The relatively cosmopolitan Kotzebue students less often expect to stay where

they are, and lean more towards leaving the state:

tabulate life kotz, chi2

Expect teo | Live in Keotzebue or
live most | smaller village?
of life? | village Kotzebue | Total
___________ U S
same | 75 19 | 92
other AK | 80 40 ¢ 120
leave AK | 11 36 | 47
___________ I T Y
Tetal | 166 93 259
Pearson chi2(2) = 46.2%9%92 Pr = 0.000

mlogit can replicate this simple analysis (although its likelihood-ratio chi-squared need
not exactly equal the Pearson chi-squared found by tabulate ):

mlogit life kotz, nolog base(l) rrr

Multinomial logistic regress:on

Number of obs =

kotz | 2.205882 7304664 2.39
leave AK |
kotz | 14.4383 59307955 6.11

LR chi2(2) =
Prob > chi2 =
Pseudo R2 =
P>z | [95% Conf
0.017 1.152687
0.000 6.132946

4.221369

33.99188

(Cutcome life==same is the compariscn group)

base (1) specifies that category 1 of y (life = “same”) is the base category for comparison.
The rrr option instructs mlogit to show relative risk ratios, which resemble the odds

ratios given by logistic.

Referring back tothe tabulate output, we can calculate that among Kotzebue students
the odds favoring “leave Alaska” over “stay in the same area” are

P(leave AK) / P(same) = (36/93) / (17/93)
=2.1176471
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Among other students the odds favoring “leave Alaska™ over “same area” are
P(leave AK) / P(same) (11/166) / (75/166)
1466667
Thus, the odds favoring “leave Alaska™ over “same area™ are 14.4385 times higher for Kotzebue
students than for others:
2.1176471 / .1466667 = 14.4385

This multiplier, a ratio of two odds. equals the relative risk ratio (14.4385) displayed by
mlogit.

Il

In general, the relative risk ratio for category j of y, and predictor x,, equals the amount by
which predicted odds favoring y = J (compared with y = base) are multiplied, per 1-unit increase
inx,, other things being equal. Inother words, the relative risk ratio rrr,, is a multiplier such
that, if all x variables except x, stay the same,

Py=j|x,) _ Py=j|x,+1)
P(y =base | x,) P(r =base | x,+1)

ITT;, ¥

ties is a continuous scale indicating the strength of students’ social ties to family and
community. We include fies as a second predictor:

mlogit life kotz ties, nolog base(l) rrr

Multinomial logistic regression Number of obs = 259

LR chi2(4) = 91.96

Prob > chi2 = 0.0000

Log likelihood = -221.77969 Pseudo R2 = 0.1717

life | RRR Std. Er¥ Z P>z {95% Conf Interval]

_____________ e e e e DT
other AK |

kotz | 2.214184 7724%3¢ 2:2Z8 G.C253 1.117483 4.387193

ties | 28224¢E¢ 079¢2:83 -4.31 0.000 .2465911 .6654492

_____________ e e e e e i e e o i
leave AK |

kotz | 14.84604 148824 5.¢€30 0./9008 S.778907 38.13955

ties | 230262 05gq0es =572 2.00¢ 1392531 .38075

Asymptotic z tests here indicate that the four relative risk ratios, describing twox variables’
effects, all differ significantly from 1.0. If ay variable has.J categories, then mlogit models
the effects of each predictor (x) variable withJ - 1 relative risk ratios or coefficients, and hence
also employs.J - | = tests — evaluating two ormore separate null hypotheses foreach predictor.
Likelihood-ratio tests evaluate the overall effect of each predictor. First, store the results from
the full model, here given the name Sull:

estimates store full
Then fita simpler model with one of the x variables omitted, and perform alikelihood-ratio test.
For example, to test the effect of ties, we repeat the regression with ties omitted:

quietly mlogit life kotz

estimates store no_ties

lrtest no_ties full .. . . e
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45.73
0.0000

likelihood-ratio t

est LR chi2 (2)
(Assumpticn: no ties

nested in full) Prob > chi2

The effect of vies is clearly significant. Next, we run a similar test on the effect of kotz:
quietly mlogit life ties
estimates store no_kotz

lrtest no_kotz full

likelihood-ratio test LR chi2(2) = 39.05
(Assumpticn: no_kotz nested in full) ! Prob > chi2 = 0.0000

Ifour data contained missing values, the three mlogit commandsjustshownmight have
analyzed three overlapping subsets of observations. The full model would use only
observations with nonmissing /ife, kotz, and ties values; the kotz-only model would bring back
in any observations missing just their ries values; and the ties-only model would bring back
observations missing just kotz values. When this happens, Stata returns an error messages
saying “observations differ.” In such cases, the likelihood-ratio test would be invalid. Analysts
must either screen observations with if qualifiers attached to modeling commands, such as

mlogit life kotz ties, nolog base(l) rrr
estimates store full
quietly mlogit life kotz if ties <
estimates store no_ties
lrtest no_ties full
quietly mlogit life ties if kotz <
estimates store no_kotz
lrtest no_kotz full
or simply drop all observations having missing values before proceeding:
drop if life >= . | kotz >= . | ties >=

Dataset NWarctic.dta has already been screened in this fashion to drop observations with
missing values.

Both kotz and ties significantly predict /ife. What else can we say from this output? To
interpret specific effects, recall that /ife = “same” is the base category. The relative risk ratios
tell us that:

Odds that a student expects migration to elsewhere in Alaska rather than staying in the

same area are 2.21 times greater (increase about 121%) among Kotzebue students (kotz=1),

adjusting for social ties to community.

Odds that a student expects to leave Alaska rather than stay in the same area are 14.85

times greater (increase about 1385%) among Kotzebue students (kotz=1), adjusting for

social ties to community.

Odds that a student expects migration to elsewhere in Alaska rather than staying are

multiplied by .48 (decrease about 52%) with each 1-unit (since ties is standardized, its units

equal standard deviations) increase in social ties, controlling for Kotzebue/village
residence. :
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Odds that a student expects to leave Alaska rather than staying are multiplied by .23
(decrease about 77%) with each 1-unit increase in social ties, controlling for
Kotzebue/village residence.

predict can calculate predicted probabilities from mlogit . The outcome (#)
option specifies for which y category we want probabilities. For example, to get predicted
probabilities that /ife = “leave AK” (category 3),

quietly mlogit life kotz ties

predict PleaveAK, outcome (
(zzticn p assumed; predicted prorazilisy)

label variable PleaveAK "P(life = 3 | kotz, ties)"

Tabulating predicted probabilities for each value of the dependent variable shows how the
model fits:

table life, contents(mean PleaveAK) row

Expect to |

live most |
cf life? | mean(PleaveAK)
__________ T PP o e
same | 0811267
cther AK | s 1770225
leave AK | .38922¢4
Total | 1814672

A minority of these students (47/259 = 18%) expect to leave Alaska. The model averages only
a.39 probability of leaving Alaska even for those who actually chose this response — reflecting
the fact that although our predictors have significant effects, most variation in migration plans
remains unexplained.

Conditional effect plots help to visualize what a model implies regarding continuous
predictors. We can draw them using estimated coefficients (not risk ratios) to calculate
probabilities:

mlogit life kotz ties, nolog base (1)

Multinomial logistic regression Number of obs = 259
LR chi2 (4) = 91.96
Prob > chi2 = 0.0000
Zcg likelihocd = -221,77969 Pseudo R2 = 0.1717
life | Coef Std. ZIrr z P>|z| [95% Conf. Interval]
_____________ im0 =1 e et e A e s
other AK |
kotz | .794884 .348€%68 2.28 0.023 .1110784 1.47869
ties | -.7334513 .1664204 -4.41 0.000 -1.05961 -.407293
cons | .206402 + 1728253 1.19 0..:2.32 -.1322902 .5450942
_____________ s i e 5 e e et e e
leave AK |
kotz | 2.697733 .4813359 5.60 0.000 1.754215 3.641252
ties | =-1.468537 .2565%91 =5u72 0.000 -1.971462 -.9656124
cons | =-2.115025 .3756163 —~54 63 0.000 -2.851611 -1.378439
(Outcome life==same is the comparison group)._
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The following commands calculate predicted logits, and then the probabilities needed for
conditional effect plots. L2villag represents the predicted logit of /ife = 2 (other Alaska) for
village students. L3kotz is the predicted logit of life=3 (leave Alaska) for Kotzebue students,
and so forth:

generate L2villag = .206402 +.794884*0 -.7334513*ties
generate L2kotz = .206402 +.794884*1 -.7334513*ties
generate L3villag = -2.115025 +2.697733*%0 -1.468537*ties
generate L3kotz = -2.115025 +2.697733*1 -1.468537*ties

Like other Stata modeling commands, mlogit saves coefficient estimates as macros.
For example, [2]_b[kotz] refers to the coefficient on kotz in the model’s second (life = 2)
equation. Therefore, we could have generated the same predicted logits as follows. L2v will
be identical to L2villag defined earlier, L3k the same as L3kotz, and so forth:

generate L2v = [2]_b[_cons] +[2]_b[kotz]*0 +[2]_b[ties]*ties
[2]_b[_cons] +[2]_b[kotz]*1 +[2]_b[ties]*ties
[3]_b[_cons] +[3]_b[kotz]*0 + [3] b[ties]*ties
[3]_b[_cons] +[3]_blkotz]*1l + [3] b[ties]*ties

generate L2k

generate L3v

generate L3k

From either set of Jogits, we next calculate the predicted probabilities:
generate Plvillag = 1/(1 +exp(L2villag) +exp(L3villag))
label variable Plvillag "same area"
generate P2villag = exp(LZvillag)/(1+exp(L2vi11ag)+exp(L3villag))
label variable P2villag "other Alaska"
generate P3villag = exp(L3vi11ag)/(1+exp(L2villag)+exp(L3villag))
label variable P3villag "leave Alaska"
generate Plkotz = 1/(1 +exp(L2kotz) +exp(L3kotz))
label variable Plkotz "same area"
generate P2kotz = exp(L2kotz)/(l +exp(L2kotz) +exp (L3kotz))
label variable P2kotz "other Alaska"
generate P3kotz = exp(L3kotz)/ (1 +exp (L2kotz) +exp (L3kotz))

label variable P3kotz "leave Alaska"
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Figures 10.7 and 10.8 show conditional effect plots for village and Kotzebue students
separately.

graph twoway mspline Plvillag ties, bands (50)
Il mspline P2villag ties, bands (50)
|| mspline P3villag ties, bands (50)
11 , xlabel (-3(1)3) ylabel(0(.2)1) yline(O 1) xline (0)
legend (order (2 3 1) position(12) ring(0) label (1 "same area")
label (2 "elsewhere Alaska") label (3 "leave Alaska") cols(1l))
ytitle ("Probability")

‘ Figure 10.7
W= elsewhere Alaska
--e------- |leave Alaska
same area
@©
gm
=
(1]
L
<]
Q<
N
- .

- 0 1 2 3
Social ties to community scale
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graph twoway mspline Plkotz ties, bands (50)

mspline P2kotz ties, bands (50)
mspline P3kotz ties, bands (50)
;, xlabel(-3(1)3) ylabel (0(.2)1) yline(0 1) xline(0)

legend (order(3 2 1) position(12) ring(0) label (1 "same area")
label (2 "elsewhere Alaska") label(3 "leave Alaska") cols (1))
ytitle( "Probability")

Figure 10.8

Probability
.6

4

—eeeeeee. leAVE Alaska
_____ elsewhere Alaska
same area

-2 -1 0 1 2 3
Social ties to community scale

The plots indicate that among village students, social ties increase the probability of staying
rather than movingelsewhere in Alaska. Relatively few village students expect to leave Alaska.
In contrast, amongKotzebue students, ties particularly affects the probability of leaving Alaska,
rather than simply moving elsewhere in the state. Only if they feel very strong social ties do
Kotzebue students tend to favor staying put.



|
|
|
|
!

288

This chapter presents methods for analyzingevent data..Survival analysis encompasses several
related techniques that focus on times until the event of interest occurs. Although the event
could be good or bad, by convention we refer to that event as a “failure.” The time until failure
is “survival time.” Survival analysis is important in biomedical research, but it can be applied
equally well to other fields from engineering to social science — for example, in modeling the
time until an unemployed person gets a job, or a single person gets married. Stata offers a full
range of survival analysis procedures, only a few of which are illustrated in this chapter.

We also look briefly at Poisson regression and its relatives. These methods focus not on
survival times but, rather, on the rates or counts of events over a specified interval of time.
Event-count methods include Poisson regression and negative binomial regression. Such
models can be fit either through specialized commands, or through the broader approach of
generalized linear modeling (GLM).

Consult the Survival Analsysis and Epidemiological Tables Reference Manual for more
information about Stata’s capabilities. Type help st to see an online overview. Selvin
(1995) provides well-illustrated introductions to survival analysis and Poisson regression. I
have borrowed (with permission) several of his examples. Other good introductions to survival
analysis include the Stata-oriented volume by Cleves, Gould and Gutierrez (2004), a chapter
in Rosner (1995), and comprehensive treatments by Hosmer and Lemeshow (1999) and Lee
(1992). McCullagh and Nelder ( 1989) describe generalized linear models. Long (1997) has
a chapter on regression models for count data (including Poisson and negative binomial), and
also has some material on generalized linear models. An extensive and current treatment of
generalized linear models is found in Hardin and Hilbe (2001).

Stata menu groups most relevant to this chapter include:

Statistics — Survival analysis

Graphics — Survival analysis graphs
Statistics — Count outcomes

Statistics — Generalized linear models (GLM)

Regarding epidemiological tables, not covered in this chapter, further information can be
found by typing help epitab or exploring the menus for

Statistics — Observational/Epi. analysis.
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Example Commands

Most of Stata’s survival-analysis ( st* ) commands require that the data have previously been
identified as survival-time by issuing an stset command (see following). stset need
only be run once, and the data subsequently saved.
stset timevar, failure(failvar)
Identifies single-record survival-time data. Variable fimevar indicates the time elapsed
before either a particular event (called a “failure”) occurred, or the period of observation
ended (“censoring™). Variable failvar indicates whether a failure (failvar=1) or censoring
(failvar=0) occurred at timevar. The dataset contains only one record per individual. The
dataset must be stset before any further st* commands will work. If we
subsequently save the dataset, however, the stset definitions are saved as well.
stset creates new variablesnamed_st,_d, t,and 10 that encode information necessary
for subsequent st* commands.

stset timevar, failure(failvar) id(patient) enter (time start)
Identifies multiple-record survival-time data. In this example, the variable timevar
indicates elapsed time before failure or censoring; failvar indicates whether failure (I)or
censoring (0) occurred at this time. patient is an identification number. The same
individual might contribute more than one record to the data, but always has the same
identification number. start records the time when each individual came under observation.

stdes
Describes survival-time data, listing definitions set by stset and other characteristics
‘ of the data.

' . stsum
Obtains summary statistics: the total time at risk, incidence rate, number of subjects, and

percentiles of survival time.

, . ctset time nfail ncensor nenter, by(ethnic sex)
Identifies count-time data. In this example, the variable fime is a measure of time; nfail is
the number of failures occurring at time. We also specified ncensor (number of censored
l observations at time) and nenter (number entering at time). although these can be optional.
ethnic and sex are other categorical variables defining observations in these data.
| . cttost
) Converts count-time data, previously identifiedbya ctset command, into survival-time
form that can be analyzed by st* commands.
I . sts graph
Graphs the Kaplan—Meier survivor function. To visually compare two or more survivor
functions, such as one for each value of the categorical variable sex, use the by () option,
, . sts graph, by (sex)
To adjust, through Cox regression, for the effects of a continuous independent variable such
as age, use the adjustfor () option,
I - sts graph, by (sex) adjustfor (age) )
Note: the by () and adjustfor() options work similarly with the other sts
I commands sts list, sts generate,and sts test.
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sts list
Lists the estimated Kaplan-Meier survivor (failure) function.

sts test sex
Tests the equality of the Kaplan-Meier survivor function across categories of sex.

sts generate survfunc = §°
Creates a new variable arbitrarily named survfunc, containing the estimated Kaplan—Meier
survivor function.

stcox x1 x2 x3
Fits a Cox proportional hazard model, regressing time to failure on continuous or dummy
variable predictors x/—x3.

stcox x1 x2 x3, strata (x4) basechazard (hazard) robust
Fits a Cox proportional hazard model, stratified by x4. Stores the group-specific baseline
cumulative hazard function as a new variable named hazard. (Baseline survivor function
’ estimates could be obtained through a basesur (survive) option.) Obtains robust
! standard error estimates. See Chapter 9 or, for a more complete explanation of robust
standard errors, consult the User’s Guide.

stphplot, by (sex)
Plots —In(~In(survival)) versus In(analysis time) for each level of the categorical variable
sex, from the previous stcox model. Roughly parallel curves support the Cox model
assumption that the hazard ratio does not change with time. Other checks on the Cox
assumptions are performed by the commands stcoxkm (compares Cox predicted curves
with Kaplan—-Meier observed survival curves) and stphtest (performs test based on
Schoenfeld residuals). See help stcox for syntax and options.

i) _ - streg xl1 x2, dist(weibull)
Fits Weibull-distribution model regression of time-to-failure on continuous or dummy
| variable predictors x/ and x2.

streg x1 x2 x3 x4, dist(exponential) robust
Fits exponential-distribution model regression of time-to-failure on continuous or dummy
predictors x/—x4. Obtains heteroskedasticity-robust standard error estimates. In addition
to Weibull and exponential, other dist () specifications for streg include lognormal,
log-logistic, Gompertz, or generalized gamma distributions. Type help streg for
more information.

stcurve, survival
After streg, plots the survival function from this model at mean values of all the x
variables.

stcurve, cumhaz at(x3=50, x4=0)
After streg, plots the cumulative hazard function from this model at mean values of x/
and x2, x3 set at 50, and x4 set at 0.

Poisson count x1 x2 x3, irr exposure (x4)
Performs Poisson regression of event-count variable count (assumed to follow a Poisson
distribution) on continuous or dummy independent variables x/-x3. Independent-variable
effects will be reported as incidence rate ratios (irr ). The exposure () option
identifies a variable indicating the amount of exposure, if this is not the same for all
observations. . S .
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Note: A Poisson model assumes that the event probability remains constant, regardless of
how many times an event occurs for each observation. If the probability does not remain
constant, we should consider using nbreg (negative binomial regression) or gnbreg
(generalized negative binomial regression) instead.
glm count x1 x2 x3, link(log) family (poisson) lnoffset(x4) eform

Performs the same regression specified in the poisson example above, but as a
generalizedlinear model (GLM). glm can fit Poisson, negative binomial, logit, and many
other types of models, depending on what link () (link function) and family ()
(distribution family) options we employ. .

Survival-Time Data

Survival-time data contain. at a minimum, one variable measuring how much time elapsed
before a certain event occurred to each observation. The literature often terms this event of
interest a “failure,” regardless of its substantive meaning. When failure has not occurred to an
observation by the time data collection ends, that observation is said to be “censored.” The
stset command sets up a dataset for survival-time analysis by identifying which variable
measures timeand (ifnecessary) which variable is a dummy indicating whether the observation
failed or was censored. The dataset can also contain any number of other measurement or
categorical variables, and individuals (for example, medical patients) can be represented by
more than one observation.

To illustrate the use of stset, we will begin with an example from Selvin (1995:453)
concerning 51 individuals diagnosed with HIV. The data initially reside in a raw-data file
(aids.raw) that looks like this:

1 1 1 34

2 17 1 52

3 37 & <7
(rows 4-50 omitted

51 81 o) 29

The first column values are case numbers (1,2, 3,...,51 ). The second column tells how many
months elapsed after the diagnosis, before that person either developed symptoms of AIDS or
the study ended (1, 17,37, .. .). The third column holds a 1 if the individual developed AIDS
symptoms (failure), or a 0 if no symptoms had appeared by the end of the study (censoring).
The last column reports the individual’s age at the time of diagnosis.

We can read the raw data into memory using infile, then label the variables and data
and save in Stata format as file aids/.dta:

infile case time aids age using aids.raw, clear
(51 observations read)

label variable case "Case ID number"
label variable time "Months since HIV diagnosis"
label variable aids "Developed AIDS symptoms"

label variable age "Age in years"
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label data "AIDS (Selvin 1995:453) "

compress
case was float now by=zs
time was float now by:e
aids was float now by=ze
age was flocat now byte

save aidsl
file c:\datz\aidsl.dtz saved

The next step is to identify which variable measures time and which indicates failure/
censoring. Although not necessary with these single-record data, we can also note which
variable holds individual case identification numbers. In an stset command, the first-
named variable measures time. Subsequently, we identify with failure () the dummy
representing whether an observation failed (1) or was censored (0). Afterusing stset, we
save the data again to preserve this information.

stset time, failure (aids) id(case)

e s W R

$ id: case
LI failurs event: zids != 0 & aids <
! obs. time irterval: {time[_n-1], time]
:‘ exit on or before: Zzilure
1.; 51 <total obs.
| 0 =xclusions

H 51 <cbs. remairing, representing
51 subjects

25 failures irn single failure-per-subject data

3164 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 97

i . save, replace
file c:\datalaidsl.dta saved

stdes yields a brief description of how our survival-time data are structured. In this
simple example we have only one record per subject, so some of this information is unneeded.

o
]
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stdes
failure _d: =ziids
analysis time _t: =ims
ids
—————————————— per subject ---------———)
Category total mean min median max
no. of subjects 51
no. of records 51 1 1 1 1
(first) entry time 0 0 0 0
(final) exit time 62.03922 1 67 97
subjects with gap 0
time on gap if gap 0 § " 3 3
time at risk 3164 62.03922 1. 67 97
failures 25 .4901961 0 0 1

The stsum command obtains summary statistics. We have 25 failures out of 3,164
person-months, giving an incidence rate of 25/3164 = .0079014. The percentiles of survival
time derive from a Kaplan-Meier survivor function (next section). This function estimates
about a 25% chance of developing AIDS within 41 months after diagnosis, and 50% within 81
months. Over the observed range of the data (up to 97 months) the probability of AIDS does
not reach 75%, so there is no 75th percentile given.

stsum
failure _d: aids
analysis time _t: time
id: «czse
| incidence no. of | ====== Survival time ----- |
| time at risk rate subjects 25% 50% 75%
_________ A e e
total 4 3164 .0079014 51 41 81

If the data happen to include a grouping or categorical variable such as sex (0=male, 1=
female), we could obtain summary statistics on survival time separately for each group by a
command of the following form:

stsum, by (sex)

Later sections describe more formal methods for comparing survival times from two or more
groups.

Count-Time Data

Survival-time ( st ) datasets like aids/.dta contain information on individual people or things,
with variables indicating the time at which failure or censoring occurred for each individual.
A different type of dataset called count-time ( ct ) contains aggregate data, with variables
counting the number of individuals that failed or were censored at time ¢. For example,
diskdriv.dta contains hypothetical test information on 25 disk drives. All but 5 drives failed

before testing ended at 1,200 hours,  --—— ————
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3
» disk drives
| hours int Hours of continuous operation
' failures byte Number c¢f failures observed
censored byte *2% 09 Number s£::i11 working
list
B R i S5 T S A
| hours failures
, _____________________________
Tis 200 z -
2. | 400 g :
3 €0C 4 ;
4. | 800 € S
5. | 100¢ 3 &
I _____________________________
6. | 1200 0 g
o S o e e e
To set up a count-time dataset, we specify the time variable, the number-of-failures
variable, and the number-censored variable, in that order. After ctset , the cttost
command automatically converts our count-time data to survival-time format.
. ctset hours failures censored
dataset name: C:\datz-.diskdriv.dta
time: hours
no. fail: faily
no. lest: cens:s
nc. enter: -—- (meaning all enter at time 0)
i . cttost
(data are ncw st
failure event: failures != [ i failures < .
obs. time interval: (0, hours!
exit on or before: 23
weighr =w
6 total obs.
0 exclusions
6 physical obs. remaining, equal to
25 weighted obs., representing
20 failures in single record/single failure data
19400 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 1200
v/
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list
N +
I hours failures w st _d _E t0 |
e N D |
1. | 1200 0 5 1 0 1200 0 |
2. | 200 1 2 1 1 200 0 |
3« | 400 1 3 1 1 400 0 |
4. | 600 1 4 1 1 600 0 |
S 800 1 8 1 1 800 0 |
b e e e o e S S i o e e |
6. | 1000 1 3 1 1 1000 0 |
T S i o 8 e T i S +
stdes
failure _d: failures
analysis time . = hours
weight: [Zweight=w]
| === e per subject -------—____ I
unweighted unweighted unweichted
Category total mean min media max
no. of subjects 6
no. of records 6 1 1 1 b
(first) entry time 0 0 0 0
(final) exit time 700 200 700 2200
subjects with gap 0
time on gap if gap 0 -
time at risk 4200 700 200 700 2200
failures 5 .8333333 0 1 1

The cttost commanddefinesasetof frequency weights, w, in the resulting st-format
dataset. st* commands automatically recognize and use these weights in any survival-time
analysis, so the data now are viewed as containing 25 observations (25 disk drives) instead of
the previous 6 (six time periods).

stsum
failure time: hours
failure/censor: failures
weight: [fweight=w]
| incidence no. of |=-=-- Survival time ----
| time at risk rate subjects 25% 50% 75%
_______ +___________________________________-_____________________-_________
total | 19400 .0010309 25 600 800 100¢C

Kaplan—-Meier Survivor Functions

Let n, represent the number of observations that have not failed, and are not censored, at the
beginning of time period 1. d, represents the number of failures that occur to these observations
during time period #. The Kaplan-Meier estimator of surviving beyond time ¢ is the product of
survival probabilities in ¢ and the preceding periods:
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St)= T {(n,-d)in} [11.1]

For example. inthe AIDS data seen earlier, one of the 51 individuals developed symptoms only
one month after diagnosis. No observations were censored this early, so the probability of
“surviving” (meaning, not developing AIDS) beyond time = 1 is

Sth= (51-1) 31=.9804

A second patient developed symptoms at rime = 2, and a third at time = 9:
$(2)= 9804 x (30-1)/50=.9608
S(9)= 9608 x (49~ 1)/49= 9412

Graphing S(1) against ¢ produces a Kaplan-Meier survivor curve, like the one seen in Figure
I'.1. Stata draws such graphs automatically with the sts graph command. For example,

. use aids, clear

(AIDS (Selwvin 19985:4%5%,

sts graph

failuvre d zids

analysis <ime :t ~ime

id: Zase

’ ; : Figure 11.1
Kaplan-Meier survival estimate
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For a second example of survivor functions, we turn to data in smokingl.dta, adapted from
Rosner (1995). The observations are 234 former smokers, attempting to quit. Most did not
succeed. Variable days records how many days elapsed between quitting and starting up again.
The study lasted one year, and variable smoking indicates whether an individual resumed
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smoking before the end of this study (smoking= 1, “failure”) or not (smoking = 0, “censored”).
With new data, we should begin by using stset to set the data up for survival-time analysis:

Contains data from C:\data\smokingl.dta

obs: 234 Smoking (Rosner 1995:607)
vars: 8 21 Jul 2005 09:35
size: 3,744 (99.9% of memory free)
storage display value
variable name type format label variable label
id int %$9.0g . Case ID number
days int %$9.0g Days abstinent
smoking byte %$9.0g Resumed smoking
age byte %$9.0g Age in years
sex byte %$9.0g sex Sex (female)
cigs byte $9.0g Cigarettes per day
co int %$9.0g Carbon monoxide x 10
minutes int %$9.0g Minutes elapsed since last cig
Sorted by:

stset days, failure (smoking)

failure event: smoking != 0 & smoking <
obs. time interval: (0, days]
exit on or before: failure

234 total obs.
0 exclusions
234 obs. remaining, representing
201 failures in single record/single failure data
18946 total analysis time at risk, at risk from t = 0
earliest observed entry t =
last observed exit t

|
o

]

366

The study involved 110 men and 124 women. Incidence rates for both sexes appear to be
similar:
stsum, by (sex)

failure _d: smoking
analysis time _t: days

| incidence ; no. of | === Survival time ----- |

sex | time at risk rate subjects 25% 50% 75%
_________ F o e e e
Male | 8813  .0105526 110 4 15 68
Female | 10133 .0106582 124 4 15 91
_________ o e
total | 18946 .0106091 234 4 15, 73

Figure 11.2 confirms this similarity, showing little difference between the survivor
functions of men and women. That is, both sexes returned to smoking at about the same rate.
The survival probabilities of nonsmokers decline very steeply during the first 30 days after
quitting. For either sex, there is less than a 15% chance of surviving beyond a full year.
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sts graph, by(sex)

failure _d: smoking
analysis time _t: days

Figure 11.2

Kaplan-Meier survival estimates, by sex
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sex=Male —_—__. sex = Female

‘ We can also formally test for the equality of survivor functions using a log-rank test.
'i ! Unsurprisingly, this test finds no significant difference (P = .6772) between the smoking
recidivism of men and women.

sts test sex

failure _d: smoking
analysis time _t: days

Log-rank test for equality of survivor functions

| | Events Events
! sex | observed expected
e I S
Male | 93 95.88
Female | 108 105.12
_______ e ————
Total | 201 201.00
chi2 (1) = 017
! Pr>chi2 = 0.6772
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Cox Proportional Hazard Models

Regression methods allow us to take survival analysis further and examine the effects of
multiple continuous or categorical predictors. One widely-used method known as Cox
regression employs a proportional hazard model. The hazard rate for failure at time ¢ is defined
as

h) probability of failing between times 7 and ¢ + Ay [1.2)
5 = ;
(A7) (probability of failing after time 7)

We model this hazard rate as a function of the baseline hazard (h,) at time ¢, and the effects of
one or more x variables,

h(?) : ho(t)exp(ﬁl-"l+ﬁ2xz+---+kak) [11.3a]
or, equivalently,
In[A®)] = ln[IIO(t)]+Bl'tl+BZx2+"'+ﬁkxk [11.3b]

“Baseline hazard” means the hazard for an observation with all x variables equal to 0. Cox
regression estimates this hazard nonparametrically and obtains maximum-likelihood estimates
of the 3 parameters in [1 1.3]. Stata’s stcox procedure ordinarily reports hazard ratios,
which are estimates of exp(B). These indicate proportional changes relative to the baseline
hazard rate.

Does age affect the onset of AIDS symptoms? Dataset aids.dta contains information that
helps answer this question. Note that with stcox , unlike most other Stata model-fitting
commands, we list only the independent variable(s). The survival-analysis dependent variables,
timevariables, and censoring variables are understood automatically with stset data.

use aids
(AIDS (Selvin 1995:453))

stcox age, nolog

failure _d: aids
analysis time _t: time
id: case

Cox regression -- Breslow method for ties
No. of subjects = 51 Number of obs = 51
No. of failures = 25
Time at risk = 3164
LR chi2 (1) = 500
Log likelihood = -86.5762953 Prob > ¢hi = 0.0254
_t | Haz. Ratio Std. Err z P>|z| [35% Conf. Interval]
_____________ +___________________________________________-____________________
age | 1.084557 .0378623 2,33 0.020 1.01283 1.161363

We might interpret the estimated hazard ratio, 1.084557, with reference to two HIV-
positive individuals whose ages are @ and @ + 1. The older person is 8.5% more likely to
develop AIDS symptoms over a short period of time (that is, the ratio of their respective hazards
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is 1.084557). This ratio differs significantly (P = .020) from 1. If we wanted to state our
findings for a five-year difference in age, we could raise the hazard ratio to the fifth power:

display exp(_b[age])*5
1.5005865
Thus, the hazard of AIDS onset is about 50% higher when the second person is five years older
than the first. Alternatively, we could learn the same thing (and obtain the new confidence
interval) by repeating the regression after creating a new version of age measured in five-year
units. The nolog noshow options below suppress display of the iteration logand the st-
dataset description.

generate age5 = age/5

label variable age5 "age in 5-year units"

stcox age5, nolog noshow

Cox regression -- Breslow mathod for ties

No. of subjects = 51 Number of obs = 2k

No. of failures = 25

Time at risk = 3164
LR chi2 (1) = 5590
Log likelihood = -£6.57€6295 Prob > chi2 = 0.0z34
_t | Haz. Ratio Std. Err. z Pz | [95% Conf. Interval]
_____________ T T ) e
ageS | 1.50C0587 2619305 2:33 0.020 1.065815 2 ; VE2TT3

Like ordinary regression, Cox models can have more than one independent variable.
Dataset heart.dta contains survival-time data from Selvin (1995) on 35 patients with very high
cholesterol levels. Variable time gives the number of days each patient was under observation.
coronary indicates whether a coronary event occurred during this time (coronary = 1) or not
(coronary=0). The data also include cholesterol levels and other factors thought to affect heart
disease. File heart.dta was previously set up for survival-time analysisby an stset time,
failure (coronary) command, so we can go directly to st analysis.

describe patient - ab
storage disrlay value

variable name type forrat label variable label
patient byte $9.C3 Patient ID number
time int %9.Cg Time in days
coronary byte %9.cg Coronary event (1) or ncne (92}
weight int %$9.C3 Weight in pounds
sbp int $9.03 Systolic blood pressurs
chol int $9.0g Cholesterol level
cigs byte %$9.03 Cigarettes smoked per day
ab byte %$9.C0g Type A (1) or B (0) personalizy
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' . stdes
g failure _d: coronary
- analysis time _t time
I e = FEI SUDJecT --------emoo o
Category total mean min median max
no. of subjects 35
I no. of records 35 1 1 i i
(first) entry time 0 0 0 0
(final) exit time 2580..529 T3 2875 374"
l subjects with gap 0
time on gap if gap 0
time at risk 90322 2580.629 773 2875 3142
l failures 8 .2285714 0 0 1

I Cox regression finds that cholesterol level and cigarettes both significantly increase the
hazard of acoronary event. Counterintuitively, weight appears to decrease the hazard. Systolic
blood pressure and A/B personality do not have significant net effects.

, - Stcox weight sbp chol cigs ab, noshow nolog

Cox regression -- no ties
I No. of subjects = 35 Number of obs = 35
No. of failures = 8
Time at risk = 90322
LR chi2(5) = 13.87
' Log likelihood = -17.263231 Prob > chi2 = 0.015%

! 49334 2w T 52967024

sbp | 112947 Sw 22 - 1.3824Z2
chol | 32142 s BHE § 1.052947
cigs | .203335 .1071031 2.08 0.038 1.43267%
ab | 3.049¢6° 2,98%81< 2 aniid s 5 20, 77655

Afterestimating the model, stcox canalso generate new variables holding the estimated
baseline cumulative hazard and survivor functions. Since “baseline” refers to a situation with
all x variables equal to zero, however, we first need to recenter some variables so that 0 values
make sense. A patient who weighs 0 pounds, or has 0 blood pressure, does not provide a useful
comparison. Guided by the minimum values actually in our data, we might shift weight so that
0 indicates 120 pounds, shp so that 0 indicates 100, and c/ol so that 0 indicates 340:

summarize patient - ab
Variable | Obs Mean Std. Dev. Min Max
_____________ +-_————___________-_________.__.._-_________________..__..___
patient | 35 18 10.24695 1 35
time | 35 2580.629 616.0796 ' 723 3141
coronary | 35 .2285714 .426043 0 1
weight | 35 170.0857 23:55516 120 225
sbp | 35 129.7143 14.28403 104 154
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chol | 35 369.2857
cigs | 35 17.14286
ab | 35 .5142857

. replace weight = weight - 120
(35 real changes made)

. replace sbp = sbp - 100
(35 real changes made)

. replace chol = chol - 340
(35 real changes made)

. summarize patient - ab
Variable | Obs Mean
patient | 35 18
time | 35 2580.629
coronary | 35 .2285714
weight | 35 50.08571
sbp | 35 29.71429
chol | 35 29.28571
cigs | 35 17.14286
ab | 35 .5142857

51.32284
13.07702
.5070926
Std. Dev
10.24695
616.0796

.426043
23.55516

51.32284
13.07702
.5070926

W
F=

O o w

Zero values for all the x variables now make more substantive sense.
variables holding the baseline survivor and cumulative hazard function estimates, we repeat the
regression with basesurv () and basechaz () options:

To create new

stcox weight sbp chol cigs ab, noshow nolog basesurv(survivor)

basechaz (hazard)

Cox regression -- no ties

No. of subjects = 35
No. of failures = 8
Time at risk - 90322
Log likelihood =

-17.263231

Yoan

t | Haz. Ratio Std. Err.

weight | .9349336 .0305184
sbp | 1.012947 .0338061
chol | 1.032142 .0139¢84
cigs | 1,203335 1071031
ab | 3.04969 2.985616

1

m

[

~ ©
w (3]

WO

O o w

[ e)

(S0 o)

1.005067
1.010707
-4476492

Note that recentering three x variables had no effect on the hazard ratios, standard errors,
and so forth. The command created two new variables, arbitrarily named survivor and hazard.
To graph the baseline survivor function, we plot survivor against time and connect data points
with in a stairstep fashion, as seen in Figure 11.3.
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- graph twoway line survivor time, connect(stairstep) sort

Figure 11.3

.98 .99

baszline survivor

.97

.96

500 1000 1500 2000 2500 3000
Time in days

The baseline survivor function — which depicts survival probabilities for patients having
“0” weight (120 pounds), “0” blood pressure (100), “0” cholesterol (340), 0 cigarettes per day,
and a type B personality — declines with time. Although this decline looks precipitous at the
right, notice that the probability really only falls from 1 to about .96, Given less favorable
values of the predictor variables, the survival probabilities would fall much faster.

The same baseline survivor-function graph could have been obtained another way, without
stcox . The alternative, shown in F igure 11.4, employs an sts graph command with
adjustfor () option listing the predictor variables:
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sts graph, adjustfor(weight sbp chol cigs ab)

failure _d: coronary
analysis time _t: time
_ Survivor function Figure 11.4
adjusted for weight sbp chol cigs ab
8
- L
w0
e
o
o
0
o
n
N
o
o
2
o
0 1000 2000 3000
analysis time

Figure 11.4, unlike Figure 11.3, follows the usual survivor-function convention of scaling
the vertical axis from 0 to 1. Apart from this difference inscaling, Figures 11.3 and 11.4 depict
the same curve.

Figure 11.5 graphsthe estimated baseline cumulative hazard against time, using the variable
(hazard) generated by our stcox command. This graph shows the baseline cumulative
hazard increasing in 8 steps (because 8 patients “failed” or had coronary events), from near 0
to .033.
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graph twoway connected hazard time, connect(stairstep) sort
msymbol (Oh)

Figure 11.5
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Exponential and Weibull Regression

Cox regression estimates the baseline survivor function empirically without reference to any
theoretical distribution. Several alternative “parametric” approaches begin instead from
assumptions that survival times do follow a known theoretical distribution.  Possible
distribution families include the exponential, Weibull, lognormal, log-logistic, Gompertz, or
generalized gamma. Models based on any of these can be fit through the streg command.
Such models have the same general form as Cox regression (equations [11.2] and [11 .3]), but
define the baseline hazard  , (1) differently. Two examples appear in this section.

If failures occur randomly, with a constant hazard, then survival times follow an
exponential distribution and could be analyzed by exponential regression. Constant hazard
means that the individuals studied do not “age,” in the sense that they are no more or less likely
to fail late in the period of observation than they were at its start. Over the long term, this
assumptionseems unjustified formachines orlivingorganisms, but it might approximately hold
if the period of observation covers a relatively small fraction of their life spans. Anexponential
model implies that logarithms of the survivor function, In(S(¢)), are linearly related to ¢.

A second common parametric approach, Weibull regression, is based on the more general
Weibull distribution. This does not require failure rates to remain constant, but allows them
to increase or decrease smoothly over time. The Weibull model implies that In(~In(S(2))) is a
linear function of In(z). ‘

Graphs provide a useful diagnostic for the appropriateniess of exponential or Weibull
models. For example, returning to aids.dta, we construct a graph (Figure 11.6) of In(S(r))
versus time, after first generating Kaplan—Meier estimates of the survivor function S(#). The
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Vv-axis labels in Figure 11.6 are given a fixed two-digit. one-decimal display format (%2.1 f) and
oriented horizontally, to improve their readability.

use aids, clear

(RICS (Seliwvin 1995:433))

generate logS = 1n(S)

graph twoway scatter logS time,
ylabel(-.8(.1)0, format(%2.1f) angle (horizontal))

Figure 11.6

logS
=}
H

40 60 80 100
Months since H!V diagnosis

The pattern in Figure 11.6 appears somewhat linear, encouraging us to try an exponential
regression:

streg age, dist(exponential) nolog noshow

No. of subjects = 51 zmber of obs = 51
No. of failures = 25
Time at risk = 164

Z% chi2 (1) = 4,34

Log likelihcoc = -56.522276 szob > chi2 = 0.0272

_t | Haz. Ratio Std. Err. z B>z [95% Conf. Interval]

_____________ T

age | 1.074414 .0349626 2.21 0.027 1.008028 1.145172

The hazard ratio (1.074) and standard error (.03 5) estimated by this exponential regression
do not greatly differ from their counterparts (1.085 and .038) in our earlier Cox regression. The
similarity reflects the degree of correspondence between empirical and exponential hazard
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functions. According to this exponential model, the hazard of an HIV-positive individual
developing AIDS increases about 7.4% with each year of age.

After streg,the stcurve commanddraws agraph ofthemodels’cumulativehazard,
survival, or hazard functions. By default, stcurve draws these curves holding all x
variables in the model at their means. We can specify other x values by using the at ()
option. The individuals in aids.dta ranged from 26 to 50 years old. We could graph the
survival function at age = 26 by issuing a command such as

stcurve, surviv at(age=26)

A more informative graph uses the atl () and at2 () options to show the survival curve at
two different sets of x values, such as the low and high extremes of age:

stcurve, survival atl(age=26) at2 (age=50) connect(direct direct)

Figure 11.7

Exponential regression

@
— @©
2
£
3
P <

o

o

0 20 40 60 80 100
analysis time
age=26 S age=50

Figure 11.7 shows the predicted survival curve (for transition from HIV diagnosis to AIDS)
falling more steeply among older patients. The significant age hazard ratio greater than 1 in
our exponential regression table implied the same thing, but using stcurve with atl ()
and at2 () values gives a strong visual interpretation of this effect. These options work in a
similar manner with all three types of stcurve graphs:

stcurve, survival Survival function
stcurve, hazard Hazard function.
stcurve, cumhaz Cumulative hazard function.

Instead of the exponential distribution, streg can also fit survival models based on the
Weibull distribution. A Weibull distribution might appear curvilinear in a plot of In(S(¢))
versus ¢, but it should be linear in a plot of In(-In(S(f))) versus In(#), such as Figure 11.8. An
exponential distribution, on the other hand, will appear linear in both plots and have a slope

e .
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equal to | in the In(~In(S(¢))) versus In(7) plot. In fact, the data points in Figure 11.8 are not
far from a line with slope 1, suggesting that our previous exponential model is adequate.

generate loglogS = 1ln(-1n(S))
generate logtime = ln (time)

graph twoway scatter loglogS logtime, ylabel(,angle (horizontal))

0 Figure 11.8
.-
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Although we do not need the additional complexity of a Weibull model with these data,
results are given below for illustration.

streg age, dist(weibull) noshow nolog

Weibull r=gression -- log relative-hazard form

No. of subjects = 51 Number of obs = 51

No. of fa:ilures = 25

Time at risk = 3164
LR chi2(1) = 4.6¢2
Log likelihood = =59.778257 Preb > ichi2 = 0.030%
_t | Haz. Ratio Std. Ezr. z P>|z| [95% Conf. Interval!
_____________ F o e e
age | 1.079477 0363323 2327 0.023 1.010531 1.153127
_____________ T e R S o o e e e s
/ln_p | .1232638 18208:8 0.68 0.498 =:2336179 .480145¢«
_____________ o e e e 0 s 5 5 A 8 B 5 e e e e
p | 1.131183 .2059723 .7916643 1.61630¢
1/p | .8840305 .1609€624 .6186934 1.263162

The Weibull regression obtains a hazard ratio estimate (1.079) intermediate between our
previous Cox and exponential results. The most noticeable difference from those earlier models
is the presence of three new lines at the bottom of the table. These refer to the Weibull
distribution shape parameter p.-A p-value of 1 corresponds-to-an exponential model: the hazard

\
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does not change with time. P> 1 indicates that the hazard increases with time; p < I indicates
that the hazard decreases. A 95% confidence interval for p ranges from .79 to 1.62, so we have
noreason to rejectan exponential (p = 1) model here. Different, but mathematically equivalent,
parameterizations of the Weibull model focus on In(p), p, or 1/p, so Stata provides all three.
stcurve draws survival, hazard, or cumulative hazard functions after streg,
dist(weibull) just as it does after streg, dist(exponential) or other streg
models.

Exponential or Weibull regression is preferable to Cox regression when survival times
actually follow an exponential or Weibull distribution. When they do not, these models are
misspecified and can yield misleading results. Cox regression, which makes no a priori
assumptions about distribution shape, remains useful in a wider variety of situations.

In addition to exponential and Weibull models, streg can fit models based on the
Gompertz, lognormal, log-logistic, or generalized gamma distributions. Type help streg,
or consult the Survival Analysis and Epidemiological Tables Reference Manual, for syntax and
a list of current options.

Poisson Regression

If events occur independently and with constant probability, then counts of events over a given
period of time follow a Poisson distribution. Let r ; represent the incidence rate:
count of events

= 11.4
") number of times event could have occurred [ ]

The denominator in [11.4] is termed the “exposure” and is often measured in units such as
person-years. We model the logarithm of incidence rate as a linear function of one or more
predictor (x) variables:

In(r,) = BO+BIxI+B:x2+"'+kak [11.5a]
Equivalently, the model describes logs of expected event counts:
In(expected count) = In(exposure) + B, + B, x, +B,x, +. . . B.x, [11.5b]
Assuming that a Poisson process underlies the events of interest, Poisson regression finds
maximum-likelihood estimates of the B parameters.

Data on radiation exposure and cancer deaths among workers at Oak Ridge National
Laboratory provide an example. The 56 observations in dataset oakridge.dta represent 56
age/radiation-exposure categories (7 categories of age x 8 categories of radiation). For each
combination, we know the number of deaths and the number of person-years of exposure.

Contains data from C:\data\oakridge.dta

obs: 56 Radiation (Selvin 1995:474)
vars: 4 21 Jul 2005 09:34
size: 616 (99.9% of menory free)
storage display value
variable name type format label variable label
age byte %9.0g ageg Age group
rad byte %9 .09 —v -—--———-Radiation exposure level
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deaths byte %$9.0g Number of deaths
pyears float %9.0g Person-years
Sorted by:
summarize
Variable | Obs Mean Std. Dev Min Max
_____________ o S 0 o e o 5 5 e i e st
age | 56 4 2.0181 1 7
rad | 56 4.5 2.312024 1 8
deaths | 56 1.839286 3.178203 0 16
! pyears | 56 3807.679 10455.91 ° 23 71382

list in 1/6

P e +
| age rad deaths pyears |
[ = |
1 | < 45 1 0 29901 |
2. | 45-49 1 1 6251 |
3. | 50-54 1 4 5251 |
4 | 55-59 i 3 4126 |
5. | 60-64 1 3 2778 |
= |
6. | 65-69 1 1 1607 |
F o e e +

Does the death rate increase with exposure to radiation? Poisson regression finds a
statistically significant effect:

poisson deaths rad, nolog exposure (pyears) irr

f Poisson regression Number of obs = 56
| ! LR chi2 (1) = 14.87
! | Prob > chi2 = 0.0001

i Log likelihood = -169.7364 Pseudo R2 = 0.0420
! deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]
_____________ e e
| 1.236469 .0603551 4.35 0.000 1.123657 1.360606

pPyears | (exposure)

For the regression above, we specified the event count (deaths) as the dependent variable
and radiation (rad) as the independent variable. The Poisson “exposure” variable is pyears, or
person-years in each category of rad. The irr option calls for incidence rate ratios rather
than regression coefficients in the results table — that is, we get estimates of exp(f3) instead of
B, the default. According to this incidence rate ratio, the death rate becomes 1.236 times higher
(increases by 23.6%) with each increase in radiation category. Although that ratio is
statistically significant, the fit is not impressive; the pseudo R? (see equation [10.4]) is only
.042.

To perform a goodness-of-fit test, comparing the Poisson model’s predictions with the
observed counts, use the follow-up command poisgof :
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poisgof
Goodness-of-fit chi2 = 254.5475
Prob > chi2(54) = 0.0000

These goodness-of-fit test results (X’ =254.5,P<.00005) indicate that our model’s predictions
are significantly different from the actual counts — another sign that the model fits poorly.

We obtain better results when we include age as a second predictor. Pseudo R? then rises
to .5966, and the goodness-of-fit test no longer leads us to reject our model.

Poisson deaths rad age, nolog exposure (pyears) irr

Poisson regression Number cf obs = 56
LR chi2 (2) = 211 .43
Prob > chi2 = 0.00359
Log likelihood = -71.4653 Pseudo =2 = 0.5%¢%
deaths | IRR Std. Err. z Bz 1 95% Conf Interval
_____________ +________-___________________-___________________________________
rad | 1.176673 .059344¢6 3.23 0.001 1.065924 1.2983:2¢2
age | 1.960034 .0997536 13.22 0.000 1.773955 2.1656:>
byears | (exposure)
poisgof
Goodness-of-fit ch:i2 = 58.00534
Prob > chi2 (53) = 0.2960

For simplicity, to this point we have treated rad and age as if both were continuous
variables, and we expect their effects on the log death rate to be linear. In fact. however, both
independent variables are measured as ordered categories. rad = 1, for example. means 0
radiation exposure; rad = 2 means 0 to 19 milliseiverts: rad = 3 means 20 to 39 milliseiverts:
and so forth. An alternative way to include radiation exposure categories in the regression,
while watching for nonlinear effects, is as aset of dummy variables. Below we usethe gen ()
optionof tabulate tocreate 8 dummy variables, r/ to r8, representing each of the 8 values
of rad.

tabulate rad, gen(r)

Radiation |
exposure |
level | Freq Percent Cum
____________ o
1| 74 12.50 12.50
2 | 7 12.50 25.G0
31 7 12 50 37.50
4 | 7 12 50 50.00
5 | 7 12.:50 6250
6 | 7 12.50 75.00
7 | 7 12.50 87.50
8 | 7 12.50 100.00
____________ st TR A
Total | 56 100.00
describe
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Contains data from C: dataloakridge.dta

obs: 56 Radiation (Selvin 1995:474)
vars: 12 21 Jul 2005 09:34
size: 1,064 (99.9% of memory free)
storage display value
variable name type format ’ label variable label
age byte %$9.0g ageg Age group
rad byte %9.0g Radiation exposure level
deaths byte $9.0g Number of deaths
pyears float %9.0g Person-years
rl byte %$8.0g rad== 1.0000
r2 byte $8.0g rad== 2.0000
r3 byte %$8.0g rad== 3.0000
r4 byte %$8.0g rad== 4.0000
5 byte $8.0g rad== 5.0000
ré byte %8.0g rad== 6.0000
r7 byte %$8.0g rad== 7.0000
r8 byte %$8.0g rad== 8.0000
Sorted by:

We now include seven of these dummies (omitting one to avoid multicollinearity) as
regression predictors. The additional complexity of this dummy-variable model brings little
improvement in fit. It does, however, add to our interpretation. The overall effect of radiation
on death rate appears to come primarily from the two highest radiation levels (r7 and 7§,
corresponding to 100 to 119 and 120 or more milliseiverts). At these levels, the incidence rates
are about four times higher.

. poisson deaths r2-r8 age, nolog exposure (pyears) irr

Poisson regression Number of obs = 5€
LR chi2 (8) = 215.44
Prob > chi2 = B..000¢
Log likelihood = -69.451814 Pseudo R2 = 9. 8087
deaths | IRR Std. Err z P>| z} [95% Cecnf. Interwval
————————————— +—________—__—_—____.__—._______—___—-_._—___-..__—_—_—_.__-___—___——._
r2 | 1.4732591 .426898 1.34 0.181 835188 2.
B3 | 1.63C688 .6659257 1.20 0.231 .73 3
r4 | 2.375967 1.0888€35 1.89 0.05¢ .8967 B
r5 | « 1275113 .7518255 ~0..31 0. 758 096 S :
re | 1.162477 1.20¢621 015 0.880 .15431958 8.847472
r7 | 4.43z729 3.337738 1.98 0.048 1.013863 19.38915
rg8 | 3.82188 1.640¢78 3.22 0.001 1.7031468 8.893267
age | 1.962.907 .1000€32 13.21 0.000 1.775267 2.168169
pyears | (expost:re)

Radiation levels 7 and 8 seem to have similar effects, so we might simplify the model by
combining them. First, we test whether their coefficients are si gnificantly different. They are
not:

test r7 = r8

(1) [deaths]r7 - [deaths]r8 = 0.0
chi2( 1) = 0.03

Prob > chi2 = 0.8676
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Next, generate a new dummy variable 178, which equals 1 if either »7 or r§ equals I:
generate r78 = (r7 | r8)
Finally, substitute the new predictor for /7 and 78 in the regression:

poisson deaths r2-r6 r78 age, irr ex(pyears) nolog

Poisson regreszion Number of obs = 56
LR chi2(7) = 215.41
Prob s gki2 = 2.0000
Log likelihood = -69.465332 Pseudo R2 = 0.6079
deaths IRR St2., B z P>|z| [95% Conf. Irnterwval]
r2 1.473602 4239013 1.34 0.181 <.229996
r3 1.630718 6259381 1.20 0.231 32630655
r4 2.376065 1.28888 1.89 0.059 £:.833629
r .7278387 7218538 -0 31 0.758 £,512185
r6 1.1 68567 1.22€942 0.15 0.880 £217704
r78 3.98032% .220024 3.48 0.001 1 ££5833
age | 1961722 .100043 13.21 0.000 1 Z3 2£ 7937
pyears {exposure)

We could proceed to simplify the model further in this fashion. At each step, test helps
to evaluate whether combining two dummy variables is justifiable.

Generalized Linear Models

Generalized linear models (GLM) have the form

g[E(.")]=Bo+B|-"|+ﬁ:-":'~--+Bi-"e- y~F [11.6]
where g[ ] is the link function and F the distribution family. This general formulation
encompasses many specific models. For example, ifg[ ] is the identity function and y follows
a normal (Gaussian) distribution, we have a linear regression model:

EG)=8,+Bix, ~B.x-+...+B,.x,, ¥ ~ Normal [11.7]

If g[ ] is the logit function and y follows a Bernoulli distribution, we have logit regression
instead:

logitfEG)] =B, + B, x, +B.x. +...+B,x,, vy ~ Bernoulli [11.8]
Because of its broad applications, GLM could have been introduced at several different
points in this book. Its relevance to this chapter comes from the ability to fit event models.

Poisson regression, for example, requires that g[ ]is the natural log function and that - follows
a Poisson distribution:

In[EQ)] =B, + B, x, + Byxy +...+B,x,, y ~ Poisson [11.9]

As might be expected with such a flexible method, Stata’s glm command permits many
different options. Users can specify not only the distribution family and link function, but also
details of the variance estimation, fitting procedure, output, and offset. These options make
glm a useful alternative even when applied to models for which a dedicated command (such

as regress, logistic,or poissonalready exists.
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We might represent a “generic” glm command as follows:
glm y x1 x2 x3, family(familyname) link (Iinkname)
lnoffset(exposure) eform jknife

where family () specifies the v. distribution family, link () the link function, and
lnoffset () an“exposure” variable such as that needed for Poisson regression. The eform
option asks for regression coefficients in exponentiated form, exp(f) rather than B. Standard
errors are estimated through jackknife ( jknife ) calculations.

Possible distribution families are

family (gaussian) Gaussian or normal (default)

family (igaussian) Inverse Gaussian

family (binomial) Bernoulli binomial

family (poisson)
family (nbinomial)

family (gamma)

Poisson
Negative binomial
Gamma

We can also specify a number or variable indicating the binomial denominator N (number of
trials), or a number indicating the negative binomial variance and deviance functions, by
declaring them in the £amily () option:

e Smeee mak
LR g T

e ¢y
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family(binomial #)

family(binomial varname)

family (nbinomial #)

Possible link functions are
link(identity)
link (logqg)
link(logit)
link (probit)
link(cloglog)
link (opower #)
link (power #)
link (nbinomial)
link (loglog)
link (logc)

Identity (default)

Log

Logit

Probit

Complementary log-log
Odds power

Power

Negative binomial
Log-log
Log-complement

Coefficient variances or standard errors can be estimated in a variety of ways. A partial list
of glm variance-estimating options is given below:

opg Berndt, Hall, Hall, and Hausman “B-H-cubed” variance
estimator.

oim Observed information matrix variance estimator.

robust Huber/White/sandwich estimator of variance.

unbiased Unbiased sandwich estimator of variance
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nwest Heteroskedasticity and autocorrelation-consistent variance
estimator.

jknife Jackknife estimate of variance.

jknifel One-step jackknife estimate of variance.

bstrap . Bootstrap estimate of variance. The defaultis | 99 repetitions;

specify some other number by addingthe bsrep (#) option.

For a full list of options with some technical details, look up glm in the Base Reference
Manual. A more in-depth treatment of GLM topics can be found in Hardin and Hilbe (2001).

Chapter 6 began with the simple regression of mean composite SAT scores (csat) on per-
pupil expenditures (expense) of the 50 U.S. states and District of Columbia (states.dta):

regress csat expense

We could fit the same model and obtain exactly the same estimates with the following
command:

glm csat expense, link(identity) family(gaussian)

Iteration 0: log likelihood = -279.99869
Generalized linear models No. of obs = 51
Optimization : ML: Newton-Raphson Residual df = 49
Scale param = 3577.678
Deviance = 175306.2097 (1/df) Deviance = 3577.678
Pearson = 175306.2097 (1/df) Pearson = 3577.678
Variance function: V(u) =1 [Gaussian]
Link function : g(u) = [Identity]
Standard errors : OIM
Log likelihood = -279.998693% AIC = 11.05877
BIC = 1752598.346
csat i Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +-___________-__________-________________________________________
expense | -.022275%6 5080371 -3.69 0.000 -.0341082 -.0104431
cons | 1060.732 32.7009 32.44 0.000 996.6399 1124.825

Because link(identity) and family (gaussian) are default options, we could
actually have left them out of the previous glm command.

The glm command can do more than Just duplicate our regress results, however.
For example, we could fit the same OLS model but obtain bootstrap standard errors:
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glm csat expense, link (identity) family (gaussian) bstrap

Iteration O: log likelihood = -279.99869
Bootstrap iterations (199)
e e 2 —=-#=== 3 ——-4==- 4§ —=—p-=-- 5
.................................................. 50
Pt S e e e e e v et s e 8 e § S 6 6 E 6 6 e e e s s e § e s 100
.................................................. 150
Generalized linear models No. of obs = 51
Optimization : ML: Newton-Raphson . Residual df = 49
Scale param = 4124.656
Deviance = 175306.2097 (1/df) Deviance = 3577.678
I Pearson = 175306.2097 (1/df) Pearson = 3577.678
Variance function: V(u) = 1 {Gaussian]
Link function : g(u) = u [Identity]
i Standard errors : Bootstrap
Log likelihoocd = -273.998693¢6 AIC = 11.05877
BIC = 175298.34¢6
| Bootstrap
{ csat | Coef. Std. Err. z P>lz| [95% Conf. Interval]
' smmmsem e o e e e
’ expense | -.0222756 .0039284 -5..67 0.000 -.0299751 -.0145762
_cons | 1060.732 25.36566 41.82 0.000 1011.017 1110.448

The bootstrap standard errors reflect observed variation among coefficients estimated from 199
samples of n = 51 cases each, drawn by random sampling with replacement from the original
n =351 dataset. In this example, the bootstrap standard errors are less than the corresponding
theoretical standard errors. and the resulting confidence intervals are narrower.

Similarly, we could use glm to repeat the first logistic regression of Chapter 10.
In the following example, we ask for jackknife standard errors and odds ratio or exponential-
form (eform ) cocfficients:
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glm any date, link(logit) family(bernoulli) eform jknife

Iteration 0: log likelihood = -12.995268
Iteration 1: log likelihood = -12.991098
Iteration 2: log likelihood = -12.991096
Jackknife iterations (23)
B i B e e i S R
Ceneralized linear models No. of obs = 23
Optimization : ML: Newton-Raphson Residual df = 21
. Scale param = 1
Deviance = 25.98219269 (1/df) Deviance = 1.237247
Pearson = 22.8885488 (1/df) Pearson = 1.082331
Variance function: V(u) = u*(1l-u) [Bernoulli]
Link function : g(u) = In(u/(l-u)) [Logit]
Standard errors : Jackknife
Log likelihood = -12.99109634 AIC =  Lu303374
BIC = 19.71120426
| Jackknife
any | Odds Ratio Std. Err. z P>z | [95% Conf. Intervzl]
_____________ +_____-______________________________________________________-___
date | 1.002093 .0015486 1.35 0.176 .9990623 1.005%33

The final poisson regression of the present chapter corresponds to this glm model:
- glm deaths r2-ré r78 age, link{log) family (poisson)
lnoffset(pyears) eform

Although glm canreplicate the models fit by many specialized commands, and adds some
new capabilities, the specialized commands have their own advantages including speed and
customized options. A particular attraction of glm is its ability to fit models for which Stata
has no specialized command.




Principal Components, Factor,
and Cluster Analysis

Principal components and factor analysis provide methods for simplification, combining many
correlated variables into a smaller number of underlying dimensions. Along the way to
achieving simplification, the analyst must choose from a daunting variety of options. Ifthe data
really do reflect distinct underlying dimensions, different options might nonetheless converge
on similar resuits. In the absence of distinct underlying dimensions, however, different options
often lead to divergent results. Experimenting with these options can tell us how stable a
particular finding is, or how much it depends on arbitrary choices about the specific analytical
technique.

Stata accomplishes principal components and factor analysis with five basic commands:

pca Principal components analysis.

factor Extracts factors of several different types.

greigen Constructs a scree graph (plot of the eigenvalues) from the recent pca or
factor.

rotate Performs orthogonal (uncorrelated factors) or oblique (correlated factors)
rotation, after factor.

score Generates factor scores (composite variables) after pca , factor , or
rotate.

The composite variables generated by score can subsequently be saved, listed, graphed, or
analyzed like any other Stata variable.

Users who create composite variables by the older method of adding other variables
together without doing factor analysis could assess their results by calculating an « reliability
coefficient:
alpha Cronbach’s « reliability

Instead of combining variables, cluster analysis combines observations by finding non-

overlapping, empirically-based typologies or groups. Cluster analysis methods are even more
diverse, and less theoretical, than those of factor analysis. Stata’s cluster command

provides tools for performing cluster analysis, graphing the results, and forming new variables
to identify the resulting groups.
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Methods described in this chapter can be accessed through the following menus:

Statistics — Other multivariate analysis
Graphics — More statistical graphs
Statistics — Cluster analysis

Example Commands

pPca x1-x20
Obtains principal components of the variables x/ through x20.

pca x1-x20, mineigen(1)
Obtains principal components of the variablesx/ throughx20. Retains components havin g
eigenvalues greater than 1.

factor x1-x20, ml factor (5)
Performs maximum likelihood factor analysis of the variables x/ throu ghx20. Retainsonly
the first five factors.

greigen
Graphs eigenvalues versus factor or component number from the most recent factor
command (also known as a “scree graph”).

rotate, varimax factors (2)
Performs orthogonal (varimax) rotation of the first two factors from the most recent
factor command.

rotate, promax factors (3)
Performs oblique (promax) rotation of the first three factors from the most recent factor

command.

score f1 f2 f£3
Generates three new factor score variables namedf, f2, and /3, based upon the most recent
factor and rotate commands.

alpha x1-x10
Calculates Cronbach’s a reliability coefficient for a composite variable defined as the sum
of x/-x10. The sense of items entering negatively is ordinarily reversed. Options can
override this default, or form a composite variable by adding together either the ori ginal
variables or their standardized values.

cluster centroidlinkage x Y z w, L2 name (L2cent)
Performs agglomerative cluster analysis with centroid linkage, using variables x, ¥, >.and
w. Euclidean distance (L2 ) measures dissimilarity among observations. Results fromthis
cluster analysis are saved with the name L2cent.

cluster tree, ylabel(0(.5)3) cutnumber (20) vertlabel
Draws a cluster analysis tree graph or dendrogram showing results from the previous
cluster analysis. cutnumber (20) specifies that the graph begins with only 20 clusters
remaining, after some previous fusion of the most-similar observations. Labels are printed
in a compact vertical fashion below the graph. cluster dendrogram does the
same thingas cluster tree.
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cluster generate ctype = groups (3) , name (L2cent)
Creates a new variable ctype (values of 1, 2, or 3) that classifies each observation into one
of the top three groups found by the cluster analysis named L2cent.

Principal Components

To illustrate basic principal components and factor analysis commands, we will use a small
dataset describing the nine major planets of this solar system (from Beatty et al. 1981). The
data include several variables in both raw and natural logarithm form. Logarithms are
employed here to reduce skew and linearize relationships among the variables.

Contains data from C:\dzzz\planets.dta

obs: 9 Solar system data

vars: 12 22 Jul 2005 09:49

size: 441 (22.9% of memory free)

storage <dcisplay value

variable name type Izrmat label variable label
planet str7 *Z5s Planet
dsun float *3.0g Mean dist. sun, km*10”6
radius float *2.0g Equatorial radius in km
rings byte g ringlbl Has rings?
moons byte *2.0g Number of known moons
mass float *2.0g Mass in kilograms
density float %2.0g . Mean density, g/cm”3
logdsun float *%Z.0g natural log dsun
lograd float =2.0g natural log radius
logmoons float %2.0g natural log (moons + 1)
logmass float %3.0g natural log mass
logdense float %£3.0g natural log dense

To extract initial factors or principal components, use the command factor followed
by a variable list (variables in any order) and one of the following options:
pcf  Principal components factoring
pf Principal factoring (default)
ipf  Principal factoring with iterated communalities
ml Maximum-likelihood factoring

Principal components are calculated through the specialized command pca . Type help
pca or help factor to see options for these commands.
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To obtain principal components factors. type

factor rings logdsun - logdense, pcf

(obs=9)
(principal component factors; 2 factors retzined)
Factor Eigenvalue Difference Proportion Cumulative

1 £.62365 3.45469 0.770¢ 0.7706

2 1.16896 1.05664 0.1348 0.9654

3 €.11232 0.05395 0.0187 0.9842

4 C.05837 0.02174 0.0097 0.9939

5 C.03663 0.03657 0.0061 1 . 0009

6 C.00006 0.0000 1.0000

Tactor Loadings

Variable | 1 2 Uniqueness
_____________ o e e e e
rings | 0.97917 0.07720 0.0352¢
logdsun | 0.67105 -0.71093 0.04427
lograd | 0.92287 037357 0.00875
logmoons | 0.97647 0.00028 0.04651
logmass | 0.83377 0.54463 0.00821
logdense | -0.84511 0.47053 0.06439

Only the first two components have eigenvalues greater than 1, and these two components
explain over 96% of the six variables’ combined variance. The unimportant 3rd through 6th
principal components might safely be disregarded in subsequent analysis.

Two factor options provide control over the number of factors extracted:
factors (#) where # specifies the number of factors
mineigen (#) where # specifies the minimum eigenvalue for retained factors

The principal components factoring ( pcf ) procedure automatically drops factors with
eigenvalues below 1, so

factor rings logdsun - logdense, pcf
is equivalent to
. factor rings logdsun - logdense, pcf mineigen(1)
In this example, we would also have obtained the same results by typing

factor rings logdsun - logdense, pcf factors (2)

To see a scree graph (plot of eigenvalues versus component or factor number) after any
factor, use the greigen command. A horizontal line at eigenvalue = 1 in Figure 12.1
marks the usual cutoff for retaining principal components, and again emphasizes the
unimportance in this example of components 3 through 6.

e e cot——.
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greigen, yline(1)

Figure 12.1
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Rotation

Rotation further simplifies factor structure. After factoring, type rotate followed by one
of these options:

varimax Varimax orthogonal rotation, for uncorrelated factors or components (default).
promax () Promax oblique rotation, allowing correlated factors or components. Choose

a number (promax power) < 4; the higher the number, the greater the degree
of interfactor correlation. promax (3) is the default.

Two additional rotate options are

factors()  Asitdoes with factor, this option specifies how many factors to retain.

horst Horst modification to varimax and promax rotation.

Rotation can be performed following any factor analysis, whether it employed the pcf .
P£f, ipf,or ml options. Inthis section, we will follow throughon our pcf example. For
orthogonal (default) rotation of the first two components found in the planetary data, we type

rotate
(varimax rotation)
Rotated Factor Loadings

Variable | 1 2 Uniqueness

————————————— +__.______________.._-__-_______—__
rings | 0.528438 £.82792 0.03526
logdsun | 0.97173 ¢.10707 0.04427
lograd |  0.25804 .96159 0.00875
logmoons | 0.58824 0.77940 0.04651
logmass | 0.06784 0.99357 0.00821
logdense | -0.88479  -0.39085 0.06439
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This example accepts all the defaults: varimax rotation and the same number of factors
retained in the last factor. We could have asked for the same rotation explicitly, with the

following command:
rotate, varimax factors (2)

For oblique promax rotation (allowing correlated factors) of the most recent factoring, type
rotate, promax

n

(promax rotat )
or Loadings,
e ) 1

£
Rotated Fac

(t ©

Variable | 1 nigueness
_____________ R
rings | 0.34664 0.76264 0.03526
logdsun | 1.05196 -0.1727¢ 0.04427
lograd | 0.00599 0.99262 0.00875
logmoons | 0.42747 0.69070 0.04651
logmass | -0.21543 1.08534 0.00821
logdense | -0.87190 -0.16922 0.06439

By default, this example used a promax power of 3. We could have specified the promax
power and desired number of factors explicitly:

rotate, pPromax (3) factors(2)
promax (4) would permit further simplification of the loading matrix, at the cost of stronger
interfactor correlations and less total variance explained.

After promax rotation, rings, lograd, logmoons, and logmass load most heavily on factor
2. This appears to be a “large size/many satellites™ dimension. logdsun and logdense load
higher on factor 1, forming a “far out/low density” dimension. The next section shows how to
create new variables representing these dimensions.

Factor Scores

Factor scores are linear composites, formed by standardizing each variable to zero mean and
unit variance, and then wei ghting with factor score coefficients and summing for each factor.
score performs these calculations automatically, using the most recent rotate or
factor results. Inthe score command we supply names for the new variables, such as

/1 and f2.

score f1 f2

(based on rotated factors)

Scoring Coefficients

Varizble 1 2
rings | 0.12674 0.22099
logdsun | 0.48769 -0.09689
lograd | -0.03840 0.30608
logmoons | 0.16664 0.19543
logmass | -0.14338 0.34386
logdense | -0.39127 -0.01609
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label variable f1 "Far out/low density"
label variable f2 "Large size/many satellites"

list planet f1 f2

e T +

|  planet £1 £2 |

== |
1. | Mercury -1.256881 -.9172388
2. | Venus -1.188757 -.516022¢9
3. | Earth -1.035242 -, 3939372 i
4. | Mars -.5970106 -.6799535 |
5. | Jupiter .3841085 1.342658

[ === - |
6. | Saturn .9259058 1.184475 |
7. | Uranus : 9347457 .768240¢
8. | Neptune .8161058 .64711¢°
9. 1 Pluto 1.017025 -1.43534

e e +

Being standardized variables, the new factor scores/7 and /2 have means (approximately) equal
to zero and standard deviations equal to one:

summarize f1 f2

Variable | Obs Mean Std. Dev. Mi- Max
————————————— +_—————._——————_——————————————————————-————————-———————-
£f1 | 9 9.9%93e-09 1 -1.256881 3
f2 | ) -3.31e-09 1 =]1.<4353¢ i

Thus, the factor scores are measured in units of standard deviations from their means. Mercury,
for example, is about 1.26 standard deviations below average on the far out/low density (f7)
dimension because it is actually close to the sun and high density. Mercury is .92 standard
deviations below average on the large size/many satellites (/2) dimension because it is small and
has no satellites. Saturn, in contrast, is .93 and 1.18 standard deviations above average on these
two dimensions.

Promax rotation permits correlations between factor scores:

correlate f1 f2

(obs=9)
| £l £2
_____________ Nl O
f1 | 1.0000
f2 | 0.4974 1.0000

Scores on factor 1 have a moderate positive correlation with scores on factor 2: far out/low
density planets are more likely also to be larger, with many satellites.

If we employ varimax instead of promax rotation, we get uncorrelated factor scores:
quietly factor rings logdsun - logdense, pcf

quietly rotate

quietly score varimaxl varimax2
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correlate varimaxl varimax2

(obs=9)
| varimaxl varimax2
_____________ +_——_—__—._____-___—
varimaxl | 1.000C
varimax2 | 0.0000 1.0000

Once created by score , factor scores can be treated like any other Stata variable —
listed, analyzed, graphed, and so forth. Graphs of principal component factors sometimes help
to identify multivariate outliers or clusters of observations that stand apart from the rest. For
example. Figure 12.2 reveals three distinct types of planets.

graph twoway scatter f1 f2, yline(0) xline (0) mlabel (planet)

mlabsize (medsmall) ylabel(, angle (horizontal))
xlabel(-1.5(.5)1.5, grid)

Figure 12.2
1 ¢ Pluto
* Uranus « Saturn
* Neptune
5
¢ Jupiter
=
[72]
S 0
©
3
>
=]
o .5
© * Mars
w
-1 o Earth
. Mercury' Venus
-1.5
-15 -1 -5 0 5 1 15

Large size/many satellites

The inner, rocky planets (such as Mercury, low on “far out/low density” factor 1; low also-
on “large size/many satellites” factor 2) cluster together at the lower left. The outer gas giants
have opposite characteristics. and cluster together at the upper right. Pluto, which physically
resembles some outer-system moons, is unique among planets for being high on the “far out/low
density™ dimension, and at the same time low on the “large size/many satellites” dimension.

This example employed rotation. Factor scores obtained by principal components without
rotation are often used to analyze large datasets in physical-science fields such as climatology
and remote sensing. In these applications, principal components are called “empirical
orthogonal functions.” The first empirical orthogonal function, or EOF1, equals the factor
score for the first unrotated principal component. EOF2 is the score for the second principal
component, and so forth.
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Principal Factoring

Principal factoring extracts principal components from a modified correlation matrix, in which
the main diagonal consists of communality estimates instead of 1's. The factor options
pf and ipf both perform principal factoring. They differ in how communalities are

estimated:
pf Communality estimates equal R~ from regressing each variable on all the others.
ipf [terative estimation of communalities.

Whereas principal components analysis focuses on explaining the variables’ variance, principal
factoring explains intervariable correlations.

We apply principal factoring with iterated communalities ( ip£ ) to the planetary data:

factor rings logdsun - logdense, ipf

(obs=9)

zined)
Cumulative

s W N

Variable
rings
logdsun
lograd
logmoons
logmass
logdense

4.59663
1.1284¢6
0.07739
0.01301
€.00125
-0.00012
Factor Lcadi

oo
L S e o)

QD Cr g

€Y Ca O

O OO Ok
O OO+ W W
O ON WSO
O NN WO W

0.79¢3
0.9843
0.997¢
0.998%8
1.0000
1.0000
5 Unigueness
5 -0.02234 2.02916
1 0.0081¢ 0.09663
5 3.01662 -0.00036
3 0.01597 2.05636
4 -2.00714 -2.00069
0 3.00997 3.00217

Only the first two factors have eigenvalues above 1. With pcf or pf factoring, we can
simply disregard minor factors. Using ipf . however. we must decide how many factors to
retain, and then repeat the analysis asking for exactly that many factors. Here we will retain

two factors:

factor rings logdsun - logdense, ipf factor (2)

(obs=9)

igenvalue

terated principzl factors;

DiZference

2 factors retained)

Proportion

Cumulative

4.57495
1.10083
0.02452
0.00439
-0.00356
-0.02537

OO D - W
o
o
~
o
w

0.0008
-0.0006
-0.0045

0.8061
1.0000
1.0043
1..0051
1.0045
1.0000
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Variable | 1 2 Uniqueness
rings | 0.97474 0.05374 0.04699
legdsun | 0.65329 -0.67309 0.12016
lograd | 0.92816 0.36047 0.00858
logmeoons | 0.96855 -0.02278 0.06139
logmass | 0.84298 0.54616 -0.00890
logdense | -0.82938 0.46490 0.09599

After this final factor analysis, we can create composite variables by rotate and
score . Rotation of the ipf factors produces results similar to those found earlier with
pcf : a far out/low density dimension and a large size/many satellites dimension. When
variables have a strong factor structure, as these do, the specific techniques we choose make
less difference.

Maximum-Likelihood Factoring

Maximum-likelihood factoring, unlike Stata’s other factor options, provides formal
hypothesis tests that help in determining the appropriate number of factors. To obtain a single
maximum-likelihood factor for the planetary data, type

factor rings logdsun - logdense, ml nolog factor (1)

(obs=9)
(maximum likelihood factors; 1 factor retained)
Factor Variance Difference Proportion Cumulative
1 4.4725¢ . 1.0000 1.0000
Test: 1 <s. no factors. cCchi2¢ 6) = 62.02, Prob > chi2 = 0.0000
Tes~t: 1 vs. mcre factors. Chi2( 9) = 51.73, Prob > chi2 = 0.0000

Factor Zoadings
1 Uniqueness

rings | 0.98726 0.02535
logdsun | 0.59219 0.64931
lograd | 0.93634 0.12288
logmoons | 0.95830 0.08052
logmass | 0.862°18 0.24451
logdense | -0.77145 0.40487

The ml output includes two y ? tests:

J vs. no factors
This tests whether the current model, withJ factors, fits the observed correlation matrix
significantly better than a no-factor model. A low probability indicates that the current
model is a significant improvement over no factors.

J vs. more factors
This tests whether the current J-factor model fits significantly worse than a more
complicated, perfect-fit model. A low P-value suggests that the current model does not
have enough factors.
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The previous 1-factor example yields these results:

vs. no factors
X’ [6] = 62.02. P = 0.0000 (actually, meaning P < .00005). The 1-factor model
significantly improves upon a no-factor model.

1 vs. more faetors
x* [9]=51.73, P = 0.0000 (P < .00005). The 1-factor model is significantly worse
than a perfect-fit model.

Perhaps a 2-factor model will do better:

factor rings logdsun - logdense, ml nolog factor(2)
(obs=9)
(maximum Z-xelin::3 factcrs; 2 factors retained)
Factor Variance Zifferencs Proportion Cumulative
1 0.6489
z 1.0000
Test: 2 vs chi2 = 0.0000
Test: 2 vs chi2 = 0.1513
ariable
lﬁé&gnr
lograd
logmoons
logmass
logdense

Now we find the following:

/ [1"] = l 14, P = 0.0000 (actually. P < .00005). The 2-factor model significantly
improves upon a no-factor model.

“
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1
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x° [4] = 6 7" P 0 1513. The 2-factor model is not significantly worse than a perfect-fit
model.

These tests suggest that two factors provide an adequate model.

Computational routines performing maximum-likelihood factor analysis often yield
“improper solutions” — unrealistic results such as negative variance or zero uniqueness. When
this happens (as it did in our 2-factor m1 example), the x * tests lack formal justification.
Viewed descriptively, the tests can still provide informal guidance regarding the appropriate
number of factors.
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Cluster Analysis — 1

Cluster analysis encompasses a variety of methods that divide observations into groups or
clusters, based on their dissimilarities across a number of variables. It is most often used as an
exploratory approach, for developing empirical typologies, rather than as a means of testing pre-
specified hypotheses. Indeed, there exists little formal theory to guide hypothesis testing for
the common clustering methods. The number of choices available at each step in the analysis
is daunting, and all the more so because they can lead to many different results. This section
provides no more than an entry point to begin cluster analysis. We review some basic ideas and
illustrate them through a simple example. The following section considers a somewhat larger
example. Stata’s Multivariate Statistics Reference Manual introduces and defines the full range
of choices available. Everitt et al. (2001) cover topics in more detail, including helpful
comparisons among the many cluster-analysis methods.

Clustering methods fall into two broad categories, partition and hierarchical. Partition
methods break the observations into a pre-set number of nonoverlapping groups. We have two
ways to do this:

cluster kmeans Kmeans cluster analysis
User specifies the number of clusters (K) to create. Stata then finds these through an
iterative process, assigning observations to the group with the closest mean.

cluster kmedians Kmedians cluster analysis
Similar to Kmeans, but with medians.

Partition methods tend to be computationally simpler and faster than hierarchical methods. The
necessity of declaring the exact number of clusters in advance is a disadvantage for exploratory
work, however.

Hierarchical methods, involve a process of smaller groups gradually fusing to form
increasingly large ones. Stata takes an agglomerative approach in hierarchical cluster analysis:
it starts out with each observation considered as its own separate “group.” The closest two
groups are merged, and this process continues until a specified stopping-point is reached, or all
observations belong to one group. A graphical display called a dendrogram or tree diagram
visualizes hierarchical clustering results. Several choices exist for the linkage method, which
specifies what should be compared between groups that contain more than one observation:

cluster singlelinkage Single linkage cluster analysis
Computes the dissimilarity between two groups as the dissimilarity between the closest pair
of observations between the two groups. Although simple, this method has low resistance
to outliers or measurement errors. Observations tend to Join clusters one at a time, formin g
unbalanced, drawn-out groups in which members have little in common, but are linked by
intermediate observations — a problem called chaining.

cluster completelinkage Complete linkage cluster analysis
Uses the farthest pair of observations between the two groups. Less sensitive to outliers
than single linkage, but with the opposite tendency towards clumping many observations
into tight, spatially compact clusters.

cluster averagelinkage Average linkage cluster analysis
Uses the average dissimilarity of observations between the two groups, yielding properties
‘intermediate between-single -and-complete-linkage. Simulation studies report that this
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works well for many situations and is reasonably robust (see Everitt et al. 2001, and sources
they cite). Commonly used in archaeology.

cluster centroidlinkage Centroid linkage cluster analysis
Centroid linkage merges the groups whose means are closest (in contrast to average linkage
which looks at the average distance between elements of the two groups). This method is
subject to reversals — points where a fusion takes place at a lower level of dissimilarity
than an earlier fusion. Reversals signal an unstable cluster structure, are difficult to
interpret, and cannot be graphed by cluster tree.

cluster waveragelinkage Weighted-average linkage cluster analysis

cluster medianlinkage Median linkage cluster analysis.
Weighted-average linkage and median linkage are variations on average linkage and
centroid linkage, respectively. In both cases, the difference is in how groups of unequal
size are treated when merged. In average linkage and centroid linkage, the number of
elements of each group are factored into the computation, giving correspondingly larger
influence to the larger group (because each observation carries the same weight). In
weighted-average linkage and median linkage, the two groups are given equal weighting
regardless of how many observations there are in each group. Median linkage, like centroid
linkage, is subject to reversals.

cluster wardslinkage Ward’s linkage cluster analysis
Joins the two groups that result in the minimum increase in the error sum of squares. Does
well with groups that are multivariate normal and of similar size, but poorly when clusters
have unequal numbers of observations.

All clustering methods begin with some definition of dissimilarity (or similarity).
Dissimilarity measures reflect the differentness or distance between two observations, across
a specified set of variables. Generally, such measures are designed so that two identical
observations have a dissimilarity of 0, and two maximally different observations have a
dissimilarity of 1. Similarity measures reverse this scaling, so that identical observations have
a similarity of 1. Stata’s cluster options offer many choices of dissimilarity or similarity
measures. For purposes of calculation, Stata internally transforms similarity to dissimilarity:

dissimilarity = 1 — similarity
The default dissimilarity measure is the Euclidean distance, option L2 (or Euclidean).
This defines the distance between observations i and jas

{Zk(xki_xlj i 3
where x ; is the value of variable x, for observation i, x i the value of x, for observation j, and
summation occurs over all the x variables considered. Other choices available for measuring
the (dis)similarities between observations based on continuous variables include the squared
Euclidean distance ( L2squared),

):k(xki _xkj)2
the absolute-value distance ( L1 ), maximum-value distance (Linfinity), and correlation
coefficient similarity measure (correlation). Choices for dissimilarities or similarities
based on binary variables include simple matching ( matching ), Jaccard binary similarity
coefficent ( Jaccard ), and many others. Type help cldis fora list and explanations.

\
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Earlier in this chapter, a principal components analysis of variables in planets.dta ( Figure
12.2) identified three types of planets: inner rocky planets, outer gas giants, and in a class by
itself, Pluto. Cluster analysis provides an alternative approach to the question of planet “types.”
Because variables such as number of moons (moons) and mass in kilograms (mass) are
measured in incomparable units, with hugely different vari ances, we should standardize in some
way to avoid results dominated by the highest-variance items. A common, although not
automatic, choice is standardization to zero mean and unit standard deviation. This is
accomplished through the egen command (and using variables in log form, for the same
reasons discussed earlier). summarize confirms that the new z variables have (near) zero
means, and standard deviations equal to one.

egen zrings = std(rings)

egen zlogdsun = std(logdsun)
egen zlograd = std(lograd)
egen zlogmoon = std(logmoons)
egen zlogmass = std(logmass)

egen zlogdens = std(logdense)

summ zrings - zlogdens
Variable | Obs Mean Std. Dev Min Max
_____________ o o e 5 00 2 e i o 1 5 e e
zrings | 9 -1.99e-08 1 -.8432741 1.0540¢3
zlogdsun | 9 -1.16e-08 1 -1.393821 1.28821¢
zlograd | 9 -3.31e-09 1 -1.3471 1.372751
zlogmoon | 9 0 1 -1.207296 1.17584¢
zlogmass | 9 -4.14e-09 1 -1.74466 1.365167
_____________ +________—_——_——-_——_—_——_————————————————_——_—_—_—_—_——_
zlogdens | 9 -1.32e-08 1 -1.453143 1.128901

The “three types” conclusion suggested by our principal components analysis is robust, and
could have been found through cluster analysis as well. For example, we might perform a
hierarchical cluster analysis with average linkage, using Euclidean distance ( L2 ) as our
dissimilarity measure. The option name (L2avg) gives the results from this particular
analysis a name, so that we can refer to them in later commands. The results-naming feature
is convenient when we need to try a number of cluster analyses and compare their outcomes.

cluster averagelinkage zrings zlogdsun zlograd zlogmoon zlogmass
zlogdens, L2 name (L2avg)

Nothing seems to happen, although we might notice that our dataset now contains three new
variables with names based on L2avg. These new L2avg* variables are not directly of interest,
but can be used unobtrusively by the cluster tree command to draw a cluster analysis
tree or dendrogram visualizing the most recent hierarchical cluster analysis results (Figure
12.3). The label (planet) option here causes planet names (values of planer) to appear
as labels below the tree. Typing cluster dendrogram instead of cluster tree
would produce the same graph.

e et e it
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cluster tree, label (planet) ylabel(0(1)5)

5- Figure 12.3
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Mercury Venus Earth Mars Pluto Jupiter Saturn Uranus Neptune
Dendrogram for L2avg cluster analysis

Dendrograms such as Figure 12.3 provide key interpretive tools for hierarchical cluster
analysis. We can trace the agglomerative process from each observation its own cluster, at
bottom, to all fused into one cluster, at top. Venus and Earth, and also Uranus and Neptune,
are the least dissimilar or most alike pairs. They are fused first, forming the first two multi-
observation clusters at a height (dissimilarity) below 1. Jupiter and Saturn, then Venus—Earth
and Mars, then Venus-Earth-Mars and Mercury, and finally Jupiter-Saturn and
Uranus—Neptune are fused in quick succession, all with dissimilarities around 1. At this point
we have the same three groups suggested in Figure 12.2 by principal components: the inner
rocky planets, the gas giants, and Pluto. The three clusters remain stable until, at much higher
dissimilarity (above 3), Pluto fuses with the inner rocky planets. At a dissimilarity near 4, the
final two clusters fuse.

So, how many types of planets are there? The answer, as Figure 12.3 makes clear, is “it
depends.” How much dissimilarity do we want to accept within each type? The long vertical
lines between the three-cluster stage and the two-cluster stage in the upper part of Figure 12.3
indicate that we have three fairly distinct types. We could reduce this to two types only by
fusing an observation (Pluto) that is quite dissimilar to others in its group. We could expand
it to five types only by drawing distinctions between several planet groups (e.g., Mercury-Mars
and Earth-Venus) that by solar-system standards are not greatly dissimilar. Thus, the
dendrogram makes a case for a three-type scheme.

The cluster generate commandcreatesanew variable indicating the type or group
to which each observation belongs. Inthis example, groups (3) calls for three groups. The
name (L2avg) option specifies the particular results we named L2avg. This option is most
useful when our session included multiple cluster analyses.
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cluster generate plantype = groups(3), name (L2avg)
label variable plantype "Planet type"
list planet plantype

1 | Mercury
| Venus
3. 1 Earth
4. |
5 |

1
Mars 1
Jupiter 3

6 | Saturn
7. | Uranus
8. | Neptune
9 | Pluto

P L L

The inner rocky planets have been coded as plantype = 1; the gas giants as plantype = 3;
and Pluto, which resembles an outer-system moon more than it does other planets, is by itself
as plantype =2. The group designations as 1, 2, and 3 follow the left-to-right ordering of final
clusters in the dendrogram (Figure 12.3). Once the data have been saved, our new typology
could be used like any other categorical variable in subsequent analyses.

These planetary data have a strong pattern of natural groups. which is why such different
techniques as cluster analysis and principal components point towards similar conclusions. We
could have chosen other dissimilarity measures and linkage methods for this example, and still
arrived at much the same place. Complex or weakly patterned data, on the other hand, often
yield quite different results depending on nuances of the methods used. The clusters found by
one method might not prove replicable under others, or even with slightly different analytical
decisions.

Cluster Analysis — 2

Discovering a simple, robust typology to describe the nine planets was straightforward. For a
more challenging example, consider the cross-national data in nations.dra. This dataset
contains living-conditions variables that might provide a basis for classifying countries into

types.

Contains data from C:\datz\nations.dta

obs: 10¢ Data on 103 naticons, ca. 13&:3
vars: 1.5 23 Jul 2005 18:37

size: 4,142 (99.2% of memcry free)

storage display value

variable name type format label variable label
country str8 %$9s Country
pop float %9.0g 1985 population in millions
birth byte %8.0g Crude birth rate/1000 people
death byte %8.0g Crude death rate/1000 people
chldmort byte %8.0g Child (1-4 yr) mortality 1985
infmort int %$8.0g Infant (<1 yr) mortality 1985
life byte $8.0g = - ~-Life expectancy at birth 1985
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food int $£.0g Per ca
energy int *2.0g Per ca

gnpcap int x2.0g Per ca

gnpgro float %%.0g Annual

urban byte %€ .0g % popul
schooll int %8.0g Primary
school2 int £&.0g Secondar
school3 byte %¥€.0g Higher e
Sorted by:

In Chapter 8, we saw that nonlinear transformations (logs or square roots) helped to
normalize distributions and linearize relationships among some of these variables. Similar
arguments for nonlinear transformations could apply to cluster analysis, but to keep our
example simple, we will not pursue them here. Linear transformations to standardize the
variables in some fashion remain important, however. Otherwise, the variable gnpcap, which
ranges from about $100 to $19,000 (standard deviation $4,400) would overwhelm other
variables such as /ife, which ranges from 40 to 78 years (standard deviation 11 years). In the
previous section, we standardized planetary data by subtracting each variable’s mean, then
dividing by its standard deviation, so that the resulting z-scores all had standard deviations of
one. In this section we take a different approach, range standardization, which also works well
for cluster analysis.

Range standardization involves dividing each variable by its range. There is no command
to do this directly in Stata, but we can improvise one easily enough. The summarize,
detail command calculates one-variable statistics, and afterwards unobtrusively stores the
results in memory as macros (described in Chapter 14). A macro named r (max) stores the
variable’s maximum, and r (min) stores its minimum. Thus, to generate new variable rpop,
defined as a range-standardized version of pop (population), type the commands

quietly summ pop, detail
generate rpop = pop/(r(max) - r(min))
. label variable rpop "Range-standardized population"

Similar commands create range-standardized versions of other living-conditions variables:

quietly summ birth, detail

generate rbirth = birth/(r(max) - r(min))

label variable rbirth "Range-standardized bith rate"
quietly summ infmort, detail

generate rinf = infmort/ (r(max) - r(min))

label variable rinf "Range-standardized infant mortality"

and so forth, defining the 8 new variables listed below. These range-standardized variables all
have ranges equal to 1.

describe rpop-rschool?2

storage display value
variable name type format label variable label
rpop float %9.0g Range-standardized population
rbirth float %9.0g Range-standardized bith rate
rinf float %9.0g Range-standardized infant
mortality
rlife float %9.0g ... _Range-standardized life
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rth 109 7452043 .30%8672 1.2279273

rinf | 109 .4051354 .2913825 1.035503
rlife | 109 1.621922 291343 2.052632
rfood | 108 1.230213 .264423¢ 1.779378
renergy 187 159785 .2137914 1.001846
rgnpcap 103 1666453 .2313276 1.005741
rschoolz | 104 4574842 28985882 1.019608

After the variables of interest have been standardized, we can proceed with cluster analysis.
As we divide more than 100 nations into “types,” we have no reason to assume that each type
will include a similar number of nations. Average linkage (used in our planetary example),
along with some other methods. gives each observation the same weight. This tends to make
larger clusters more influential as agglomeration proceeds. Weighted average and median
linkage methods, on the other hand, give equal weight to each cluster regardless of how many
observations it contains. Such methods consequently tend to work better for detecting clusters
of unequal size. Median linkage. like centroid linkage, is subject to reversals (which will occur
with these data), so the following example applies weighted average linkage. Absolute-value
distance ( L1 ) provides our dissimilarity measure.

. cluster waveragelinkage rpop - rschool2, L1 name (Llwav)

The full cluster analysis proves unmanageably large for a tree graph:

cluster tree

£Co0 many leaves; -rrnz:iaer using the cutvalue() or cutnumber() options

I

Following the error-message advice, Figure 12.4 employs a cutnumber (100) option to
form a dendrogram that starts with only 100 groups, after the first few fusions have taken place.
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cluster tree, ylabel (0(.5)3) cutnumber (100)

31 Figure 12.4
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The bottom labels in Figure 12.4 are unreadable, but we can trace the general flow of this
clustering process. Most of the fusion takes place at dissimilarities below 1. Two nations at
far right are unusual; they resist fusion until about 1.5, and then form a stable two-nation group
quite different from all the rest. This is one of four clusters remaining above dissimilarities of
2. The first and second of these four final clusters (reading left to right) appear heterogeneous,
formed through successive fusion of a number of somewhat distinct major subgroups. The third
cluster, in contrast, appears more homogeneous. It combines many nations that fused into two
subgroups at dissimilarities below 1, and then fused into one group at slightly above 1.

Figure 12.5 gives another view of this analysis, this time using the cutvalue (1) option
to show only clusters with dissimilaritics above 1. The vertlabel option, not really
needed here, calls for the bottom labels (G1. G2. etc.) to be printed vertically instead of
horizontally.
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cluster tree, ylabel (0(.5)3) cutvalue (1) vertlabel

34 Figure 12.5

2.54

24

1.54

L1 dissimilarity measure
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Dendrogram for L1wav cluster analysis

As Figure 12.5 shows, there are 11 groups remaining at dissimilarities above 1. For
purposes of illustration. we will consider only the top four groups, which have dissimilarities
above2. cluster generate createsa categorical variable for the final four groups from

the cluster analysis we named L /wayv.
cluster generate ctype = groups(4), name (Llwav)
label variable Ctype "Country type"
We could next examine which countries belong to which groups by typing
by ctype: 1list country

A more compact list of the same information appears below. This list was produced by copying
and pasting data from nations.dta into the Data Editor to forma separate, single-purpose dataset
in which the columns are country types.

B e e S R i o e S e e i +

| ctypel ctypel ctype3 ctyped |
e S s e A B [

1. | Algsria Argentirn Banglade China |
2.« Brzzil Austral: Benin India |
3 | Burma Austriz Bolivia |
4. | Crile Eslgiurm Botswana |
5. | Colombia Canadsza BurkFaso |
b e e e e e e e e |

6. | CostaRic Denmark Burundi |
7. | DomRep Finland Cameroon |
8. | Ecuador france CenAfrRe |
9. | Egypt Greece ElSalvad |
10. | Indonesi HongKong Ethiopia |
s I

11. | Jamaica Hungary Ghana |
12. | Jordan Ireland Guatemal |
13. | Malaysia Israel Guinea - |
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14, Haiti i
1 5. | Honduras
f o e oo ]
16 IvoryCoa
17 Kenya |
18 Liberia
] Madagasc |
20 | Malawi |
i e T — |
241 | Mauritan |
2Z2. | Mozambig |
23. | Nepal |
24 ! Nicaragu |
<5 Niger |
________________________________________ [
265 LEETEE Nigeria
2V Pakistan !
28. | Venezuel PapualNG
29. | Rwanda |
30. | Senegal i
s o s s e 8 S e e I
31. | Yugcslzv Sierrale
2. | Somalia {
33. ] |
34, i
35. |
<
33
39
40

| The two-nation cluster seen at far right in Figure 12.4 turns out to be type 4, China and
India. The broad, homogeneous third cluster in Figure 12.4, type 3, contains a large group of
the poorest nations, mainly in Africa. The relatively diverse type 2 contains nations with higher
living conditions including the U.S.. Europe, and Japan. Type 1, also diverse, contains nations
with intermediate conditions. Whether this or some other typology is meaningful remains a
substantive question. not a statistical one, and depends on the uses for which a typology is
needed. Choosing different options in the steps of our cluster analysis would have returned
different results. By experimenting with a variety of reasonable choices, we could gaina sense
of which findings are most stable.



Time Series Analysis

Stata’s evolving time series capabilities are covered in the 350-page Time-Series Reference
Manual. This chapter provides a brief introduction, beginning with two elementary and useful
analytical tools: time plots and smoothing. We then move on to illustrate the use of
correlograms, ARIMA models, and tests for stationarity and white noise. Further applications,
notably periodograms and the flexible ARCH family of models, are left to the reader’s
explorations.

A technical and thorough treatment of time series topics is found in Hamilton (1994).
Other sources include Box, Jenkins, and Reinsel (1994), Chatfield (1996), Diggle (1990),
Enders (1995), Johnston and DiNardo (1997), and Shumway ( 1988).

Menus for time series operations come under the following headings:
Statistics — Time series
Statistics — Multivariate time series

Statistics — Cross-sectional time series

Graphics — Time series graphs

Example Commands

- ac y, lags(8) level (95) generate (newvar)
Graphs autocorrelations of variable ¥, with 95% confidence intervals (default), for lags 1
through 8. Stores the autocorrelations as the first 8 values of newvar. ‘

- arch D.y, arch(1/3) ar(l) ma(l)
Fits an ARCH (autoregressive conditional heteroskedasticity) model for first differences
of y, including first- through third-order ARCH terms, and first-order AR and MA
disturbances.

. arima y, arima(3,1,2)
Fits a simple ARIMA(3,1,2) model. Possible options include several estimation strategies,
linear constraints, and robust estimates of variance.

. arima y, arima(3,1,2) sarima(1,0,1,12)
Fits ARIMA model including a multiplicative seasonal component with period 12.

. arima D.y x1 L1.x1 x2, ar(l) ma(l 12)
Regresses first differences of yonxl, lag-1 values ofx/, and x2, including AR(1), MA(1),
and MA(12) disturbances. '
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corrgram y, lags(8)

Obtains autocorrelations, partial autocorrelations, and Q tests for lags 1 through 8.
dfuller y

Performs Dickey—Fuller unit root test for stationarity.

dwstat
After regress, calculates a Durbin—Watson statistic testing first-order autocorrelation.

egen newvar = ma(y), nomiss t(7)
Generates newvar equal to the span-7 moving average of y, replacing the start and end
values with shorter, uncentered averages.

generate date = mdy (month,day, year)
Creates variable date, equal to days since January 1, 1960, from the three variables month,
day, and vear-.

generate date = date(str_date, "mdy")
Creates variable date from the string variable str_date, where str_date contains dates in
month, day, year form such as “11,19/20017, “4/18/98”, or “June 12, 1948”. Type help
dates for many other date functions and options.

generate newvar = L3.y
Generates newvar equal to lag-3 values of y.

pPac y, lags(8) yline(0) ciopts(bstyle(outline))
Graphs partial autocorrelations with confidence intervals and residual variance for lags 1
through 8. Draws a horizontal line at 0; shows the confidence interval as an outline, instead
of a shaded area (default).

pergram y, generate(newvar)
Draws the sample periodogram (spectral density function) of variable y and creates newvar
equal to the raw periodogram values.

prais y x1 x2
Performs Prais—Winsten regression of y on x/ and x2, correcting for first-order
autoregressive errors. prais y xl1 x2, corc does Cochrane—Orcutt instead.

smooth 73 y, generate(newvar)
Generates newvar equal to span-7 running medians of y, re-smoothing by span-3 running
medians. Compound smoothers such as “3RSSH” or “4253h,twice” are possible. Type
help smooth,or help tssmooth ,for other smoothing and filters.

tsset date, format (%d)
Defines the dataset as a time series. Time is indicated by variable date, which is formatted
as daily. For “panel” data with parallel time series for a number of different units, such as
cities, tsset city year identifies both panel and time variables. Most of the
commands in this chapter require that the data be tsset.

tssmooth ma newvar = y, window(2 1 2)
Applies a moving-average filter to v, generating newvar. The window (2 1 2) option
finds a span-5 moving average by including 2 lagged values, the current observation, and
2 leading values in the calculation of each smoothed point. Type help tssmooth for
a list of other possible filters including weighted moving averages, exponential or double
exponential, Holt—Winters, and nonlinear.
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tssmooth nl newvar = Y, smoother (4253h, twice)
Applies a nonlinear smoothing filter to y, generating newvar. The
smoother (4253h, twice) option iteratively finds running medians of span4.2 5, and
3, then applies Hanning, then repeats on the residuals. tssmooth nl , unlike other
tssmooth procedures, cannot work around missing values.

wntestq y, lags(15)
Box-Pierce portmanteau Q test for white noise (also provided by corrgram).

Xcorr x y, lags(8) xline (0)
Graphs cross-correlations between input (x) and output () variable for lags 1-8.
Xcorr x y, table gives a text version that includes the actual correlations (or

include a generate (newvar) option to store the correlations as a variable).

Smoothing

Many time series exhibit rapid up-and-down fluctuations that make it difficult to discern
underlying patterns. Smoothing such series breaks the data into two parts, one that varies
gradually, and a second “rough” part containing the leftover rapid changes:

data = smooth + rough

Dataset MILwater.dta contains dataon daily water consumption for the town of Milford, New
Hampshire over seven months from January through July 1983 (Hamilton 1985b).

Contains data from MILwater.dta

obs: 212 Milford daily water use, . ./83
- 7/31/83
vars: 4 27 Jul 2005 12:41
size: 2,120 (99.9% of memory free)
storage display value

variable name type format label variable label
month byte %$9.0g Month
day byte $9.0g Date
year int %$9.0g Year
water int %9.0g Water use in 1000 gallons
Sorted by:

Before further analysis, we need to convert the month, day, and year information into a
single numerical index of time. Stata’s mdy () function does this, creating an elapsed-date
variable (named date here) indicating the number of days since January 1, 1960.

generate date = mdy (month,day, year)
list in 1/5

P e +
| month day year water date |
f s e e |
1z |l 1 1 1983 520 8401 |
2. | 1 2 1983 600 8402 |
3. 1 3 1983 610 8403 |
4. | 1 4 1983 590 8404 |
Sy | 1 5 1983 620 8405 |
e -+
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The January 1, 1960 reference date is an arbitrary default. We can provide more
understandable formatting for date, and also set up our data for later analyses, by using the
tsset (time series set) command to identify date as the time index variable and to specify

the %d (daily) display option for this variable.

tsset date, format (%d)
time variable: date, 01janl1983 to 313jull983

list in 1/5

o +
| month day year water date |
== |
. | 1 1 1983 520 01jan1983 |
2e | 1 b 1983 600 02jan1983 |
3. 1 1 3 2983 610 03jan1983 |
4. | 1 4 23983 590 04jan1983 |
5. 1 1 5 ~983 620 05jan1983 |
e +

Dates in the new date format, such as “05jan1983”, are more readable than the underlying
numerical values such as “8405” (days since January 1, 1960). If desired, we could use %d
formatting to produce other formats, such as “05 Jan 1983” or “01/05/83”. Stata offers a
number of variable-definition, display-format, and dataset-format features that are important
with time series. Many of these involve ways to input, convert, and display dates. Full
descriptions of date functions are found in the Data Management Reference Manual and the
User’s Guide, or they can be explored within Stata by typing help dates.

The labeled values of date appear in a graph of water against date, which shows day-to-day
variation, as well as an upward trend in water use as summer arrives (Figure 13.1):

graph twoway line water date, ylabel (300(100)900)

Figure 13.1
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Visual inspection plays an important role in time series analysis. It often helps us to see
underlying patterns in jagged series if we smooth the data by calculating a “moving average”
ateach point fromiits present, earlier, and later values. For example, a “moving average of span
37 refers to the mean of y,,,y,, and y #1 - We could use Stata’s explicit subscripting to
generate such a variable:

generate water3 = (water[_n-1] + water[_n] + water[_n+1])/3
Or, we could apply the ma (moving average) function of egen :

- egen water3 = ma(water), nomiss t(3)

The nomiss option asks for shorter, uncentéred moving averages in the tails; otherwise, the
first and last values of water3 would be missing. The t(3) option calls for moving averages
of span 3. Any odd-number span >3 could be used.

For time series ( tsset ) data, powerful smoothing tools are available through the
tssmooth commands. Allbut tssmooth nl can handle missing values.

tssmooth ma moving-average filters, unweighted or wei ghted
tssmooth exponential single exponential filters

tssmooth dexponential double exponential filters

tssmooth hwinters nonseasonal Holt-Winters smoothing
tssmooth shwinters seasonal Holt-Winters smoothing

tssmooth nl nonlinear filters

Type help tssmooth exponential, help tssmooth_hwinters , etc. for the
syntax of each command.

Figure 13.2 graphs a simple 5-day moving average of Milford water use (water5), together
with the raw data (water). This graph twoway commandoverlays aline plot of smoothed
water5 values with a line plot of raw water values (thinner line). X-axis labels mark start-of-
month values chosen “by hand” (8401, 8432, etc.) to make the graph more readable.
Readability is also improved by formatting the labels as $dmd (date format, but only month
followed by day). Compare Figure 13.2’s labels with their default counterparts in Figure 13.1.

tssmooth ma water5 = water, window(2 1 2)

The smoother applied was
(1/5) *[x(t-2) + x(t-1) + 1*x(t) + x(t+l) + x(t+2)]; x(t)= water
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graph twoway line water5 date, clwidth(thick)
|1 line water date, clwidth(thin) clpattern(solid)
|1l , ylabel(300(100)900)
xlabel (8401 8432 8460 8491 8521 8552 8582 8613,
grid format (%dmd))
xtitle("") ytitle(Water use in 1000 gallons)
legend (order (2 1) position(4) ring(0) rows(2)
label (1 "S-day average") label(2 "daily water use"))

Figure 13.2
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Moving averages share a drawback of other mean-based statistics: they have little
resistance to outliers. Because outliers form prominent spikes in Figure 13.1, we might also try
a different smoothing approach. The tssmooth nl command performs outlier-resistant
nonlinear smoothing, employing methods and a terminology described in Vellemanand Hoaglin
(1981) and Velleman (1982). For example,

tssmooth nl water5r = water, smoother(5)

creates a new variable named water5r, holding the values of water after smoothing by running
medians of span 5. Compound smoothers using running medians of different spans, in
combination with “hanning” (%, Y, and % -weighted moving averages of span 3) and other
techniques, can be specified in Velleman’s original notation. One compound smoother that
seems particularly useful is called “4253h, twice.” Applying this to water, we calculate
smoothed variable water4r:

tssmooth nl waterdr = water, smoother (4253h,twice)

Figure 13.3 graphs new smoothed values, water4r. Compare Figure 13.3 with 13.2 to see
how the 4253h, twice smoothing performs relative to a moving-average. Although both
smoothers have similar spans, 4253h, twice does more to reduce the jagged variations.
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Figure 13.3
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, Sometimes our goal in smoothing is to look for patterns in smoothed plots. With these
particular data, however, the “rough” or residuals after smoothing actually hold more interest.
l We can calculate the rough as the difference between data and smooth, and then graph the
results in another time plot, F igure 13.4.
generate rough = water - waterdr
, . label variable rough "Residuals from 4253h, twice"

graph twoway line rough date,
xlabel (8401 8432 8460 8491 8521 8552 8582 8613,
l grid format (%dmd)) xtitle("")

Figure 13.4
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The wildest fluctuations in Figure 13.4 occur around March 27-29. Water use abruptly
dropped, rose again, and then dropped even further before returning to more usual levels. On
these days, local newspapers carried stories that hazardous chemical wastes had been
discovered in one of the wells that supplied the town’s water. Initial reports alarmed people,
but they were reassured after the questionable well was taken offline.

The smoothing techniques described in this section tend to make the most sense when the
observations are equally spacedin time. For time series withuneven spacing, lowess regression
(see Chapter 8) provides a practical alternative.

Further Time Plot Examples

Dataset atlantic.dta contains time series of climate, ocean, and fisheries variables for the
northern Atlantic from 19502000 (the original data sources include Buch 2000, and others
cited in Hamilton, Brown, and Rasmussen 2003). The variables include sea temperatures on
FyllaBank off west Greenland; air temperatures in Nuuk, Greenland’s capital city; two climate
indexes called the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO); and
catches of cod and shrimp in west Greenland waters.

Contains data from atlantic.dta

obs: 51 Greenland climate & fishsries

vars: 8 27 Jul 2005 12:41

size: 1,734 (99.9% of memory free)

storage display value
variable name type format label variable label
year int sty Year
fylltemp float %9.0g Fylla Bank temp. at 0-40r
fyllsal float %9.0g Fylla Bank salinity at 0-<lm
nuuktemp float %9.0g Nuuk air temperature
wNAO float %9.0g Winter (Dec-Mar)
Lisbon-Stykkisholmur N2

wAO float %9.0g Winter (Dec-Mar) AO index
tcodl float %9.0g Division 1 cod catch, 1031z
tshrimpl float %9.0g Division 1 shrimp catch, 2300t

Before analyzing these time series, we tsset the dataset, which tells Stata that the
variable year contains the time-sequence information.

tsset year, yearly
time variable: year, 1950 to 2000
With a tsset dataset, two new qualifiers become available: tin (times in) and
twithin (times within). To list Fylla temperatures and NAO values for the years 1950
through 1955, type
list year fylltemp wNAO if tin(1950,1955)

e it +

| year fylltemp wNAO |

o s o i it it i |
1. | 1950 2.1 1.4 |
2. | 1951 1.9 =1.26 |
3: |l 1.6

1952 L TP - . T8 [ SR DS
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4 | 1953 Ziod <187
S. | 1954 2.3 13
= m oo e [
6. | 1955 1.2 =2+52 |
e +

The twithin qualifier works similarly, but excludes the two endpoints:
list year fylltemp wNAO if twithin (1950,1955)

+ ————————————————————————— <+
| year fylltemp WNAO |
[=mmm |
2, | 1851 1.9 = :26
3. | 19852 1.6 83 |
4. | 1953 2:1 18 |
5. | 1954 2.3 13 |
i i T, +

Weuse tssmooth nl todefineanew variable, fy//4, containing 4253h, twice smoothed
values of fylltemp (data from Buch 2000).
tssmooth nl fyll4 = fylltemp, smoother (4253h, twice)

Figure 13.5 graphs raw (fvlltemp) and smoothed (fyil4) Fylla Bank temperatures. Raw
temperatures are shown as spike-plot deviations from the mean (1.67 °C), so this graph
emphasizes both decadal cycles and annual variations.
graph twoway spike fylltemp year, base(1.67) yline(1.67)
Il line fylld4 year, clpattern(solid)
| , ytitle("Fylla Bank temperature, degrees C") ylabel(0(1)3)
xtitle("") xtick(1955(10) 1995) legend(off)

Figure 13.5

, degrees C

2

1

Fylla Bank temperature,

1950 1960 1970 1980 1990 2000

The smoothed values of Figure 13.5 exhibit irregular periods of generally warmer and
cooler water. Of course, “warmer” is a relative term around Greenland; these summer sea

temperatures rise no higher than 3.34 °CG(37 °F).-
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Fylla Bank temperatures are influenced by a large-scale atmospheric pattern called the
North Atlantic Oscillation, or NAO. Figure 13.6 graphs smoothed temperatures together with
smoothed values of the NAO (a new variable named wNAO4). For this overlaid graph,
temperature definesthe leftaxis scale, yaxis (1) ,and NAO theright, yaxis (2) . Further
y-axis options specify whether they refer to axis 1 or 2. For example, a horizontal line drawn
by yline (0, axis(2)) marksthezero point ofthe NAO index. On both axes, numerical
labels are written horizontally. The legend appears at the 5 o’clock position inside the plot
space, position(5) ring(0).

graph twoway line fyll4 year, yaxis (1),
ylabel (0(1)3, angle(horizontal) nogrid axis (1))
ytitle("Fylla Bank temperature, degrees C", axis(1l))
Il line wNAO4 year, yaxis(2) ytitle ("Winter NAO index", axis (2))
ylabel(-3(1)3, angle(horizontal) axis (2)) yline (0, axis(2))
|1 , xtitle("") xlabel(1950(10)2000, grid) xtick (1955(5)1995)
legend(label (1 "Fylla temperature") label (2 "NAO index") cols (1)

position(5) ring(0))

Figure 13.6
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Overlaid plots provide a way to visually examine how several time series vary together.
In Figure 13.6, we see evidence of a negative correlation: high-NAO periods correspond to low
temperatures. The physical mechanism behind this correlation involves northerly winds that
bring Arctic air and water to west Greenland during high-NAO phases. The negative
temperature-NAO correlation became stronger during the later part of this time series, roughly
the years 1973 to 1997. We will return to this relationship in later sections.
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Lags, Leads, and Differences

Time series analysis often involves lagged variables, or values from previous times. Lags can
be specified by explicit subscripting. For example, the following command creates variable
WNAO_I, equal to the previous year’s NAO value:

generate wNAO 1 = WwNAO[_n-1]

(I missing value generatad)

An alternative way to achieve the same thing, using tsset data, is with Stata’s 1. (lag)
operator:

generate wNAO 1

(1 missing values generz:=d)

Lag operators are often simpler than an explicit-subscripting approach. More importantly, the
lag operators also respect panel data. To generate lag 2 values, use

generate wNAO 2 = L2.wNAO
(¢ missing values generazad)

list year wNAaO WNAO 1 wNAO 2 if tin(1950,1954)

e i T i i i 550 e ot e +
i year WINAD W -—-_1 wNAO 2 |
[ Bt e o o R o i !
3 I 1950 Lod 3 "
l I 1951 ! U 2.4 s A
2.1 1952 33 = 26 1.4 |
4 | 1953 18 83 =126 |
5. 1. 1954 13 i8 -83 |
S S e e s e S e s e e S R e ——— +

We could have obtained this same list without generating any new variables, by instead typing
list year wNAO L .wWNAO L2.wNAO if tin (1950,1954)

The L. operator is one of several that simplify the analysis of tsset datasets. Other
time series operators are F. (lead). D. (difference), and S. (seasonal difference). These
Operators can be typed in upper or lowercase — for example, F2.wNAO or £2.wNAO.

Time Series Operators

L. Lagy, , ( L1. means the same thing)

L2.  2-period lag v, . (similarly, L3. etc. L (1/4) . means L1. through
L4.)

F. Leady,., ( F1. means the same thing)

F2.  2-period leady,, (similarly, F3., etc.)

D. Difference y,~y,, (D1. means the same thing)

D2.  Second difference (y, V) =W = y,.) (similarly, D3., etc.)

S. Seasonal difference y, =Ye1» (which is the same as D )

S2.  Second seasonal difference 0 —y.) (similarly, s3., etc.)

In the case of seasonal differences, S12. does not mean “12th difference,” but rather a first
difference at lag 12. For example, if we had monthly temperatures instead of yearly, we might
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want to calculate S12. temp . which would be the differences between December 2000
temperature and December 1999 temperature, November 2000 temperatures and November
1999 temperature, and so forth.
Lag operators can appear directly in most analytical commands. We could regress 1973-97
Sylitemp on wNAO, including as additional predictors wNAO values from one, two, and three
years previously, without first creating any new lagged variables.

regress fylltemp wNAO L1.wNAO L2.wNAO L3.wNAO if tin(1973,1997)

Source | Ss d£ MS = 28

————————————— e e = 4,57

Model | 3.1884%13 4 .797122826 = 0.0088

Residual | 3.48929123 20 .174464562 = 0.4775%

_____________ e e o g e S = 0 . 37324

Total | 6.67778254 24 .278240939 = 41769

fylltemp | Coef Sxd. Ery t P>1t| [25% Conf. Intervall

_____________ e
wNAO |

-- | -.1688424 .0412995 -4.09 0.001 -.2549917 =, 28288312

L1 | .0043805 .042143¢6 0.10 0.918 -.0835294 0822905

L2 | -.0472993 050851 -0.93 0.363 =.1533725 058774

L3 | .0264582 19541 0.53 0.599 -.0768738 1298102

cons | 1.727913 14.24 0.0090 1.474763 1.981063

_____________ s e e e 0 5 0 5 e o et P e

Equivalently, we could have typed
regress fylltemp L(0/3).wNAO if tin(1973,1997)
The estimated model is
predicted fylltemp, = 1.728 —.169wNAO, + .004wNAO, , — .04TwNAO, , + .026wNAO, ,

Coefficients on the lagged terms are not statistically significant; it appears that current
(unlagged) values of wNAO, provide the most parsimonious prediction. Indeed, if we re-
estimate this model without the lagged terms. the adjusted R* rises from .37 to .43. Either
model is very rough, however. A Durbin-Watson test for autocorrelated errors is inconclusive,
but that is not reassuring given the small sample size.

dwstat

Durbin-Watson d-statistic( 5§, 25) = 1.423806

Autocorrelated errors, commonly encountered with time series, invalidate the usual OLS
confidence intervals and tests. More suitable regression methods for time series are discussed
later in this chapter.
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Correlograms

Autocorrelation coefficients estimate the correlation between a variable and itselfat particular
lags. For example, first-order autocorrelation is the correlation betweeny, and y, ,. Second
order refers to Cor[y,. v, .]. and so forth. A correlogram graphs correlation versus lags.

Stata’s corrgram commandprovides simple correlograms and related information. The
maximum number of lags it shows can be limited by the data, by matsize , or to some
arbitrary lower number that is set by specifying the lags () option:

corrgram fylltemp, lags (9)

=1 0 1 =1 0 1
LAG AC ExC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.4038 0,414 8.8151 0.0030 | === | ===
2 0.1996 05 11012 0.0041 | - |
3 0.0788 11.361 0.009¢ | |
4 0.0071 11.364 0.022¢8 | |
5 -0.1622 12.212 0.0242 -] -
6 =0.0733 13.234 0.0395 | |
7 0.0490 13.382 0.0633 | | =
8 -0.102¢ 14.047 0.08¢5S | -—
9 -0.2228 17.243 0.0450 = -=

Lags appear at the left side of the table, and are followed by columns for the autocorrelations
(AC) and partial autocorrelations (PAC). For example, the correlation between Sylltemp , and
Mlltemp ., is .1996, and the partial autocorrelation (adjusted for lag 1) is .0565. The (0]
statistics (Box—Pierce portmanteau) test a series of null hypotheses that all autocorrelations up
to and including each lag are zero. Because the P-values seen here are mostly below .05, we
can reject the null hypothesis, and conclude that fylltemp shows significant autocorrelation. If
none of the Q statistics had been below .05, we might conclude instead that the series was
“white noise” with no significant autocorrelation.

At the right in this output are character-based plots of the autocorrelations and partial
autocorrelations. Inspectionof such plots plays a role in the specification of time series models.
More refined graphical autocorrelation plots can be obtained through the ac command:

ac fylltemp, lags(9)

The resulting correlogram, Figure 13.7, includes a shaded area marking pointwise 95%
confidence intervals. Correlations outside of these intervals are individually significant.
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Figure 13.7
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Bartlett's formula for MA(q) 95% confidence bands

A similar command, pac, produces the graph of partial autocorrelations seen in Figure
13.8. Approximate confidence intervals (estimating the standard error as 1/vn ) also appear in
Figure 13.8. The default plot produced by both ac and pac has the look shown in Figure
13.7. For Figure 13.8 we chose different options, drawing a baseline at zero correlation, and
indicating the confidence interval as an outline instead of a shaded area.

pac fylltemp, yline(0) lags(9) ciopts(bstyle(outline))

Figure 13.8
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Cross-correlograms help to explore relationships between two time series. Figure 13.9
shows the cross-correlogram of wNAO and Sylltemp over 1973-97. The cross-correlation is
substantial and negative at 0 lag, but is closer to zero at other positive or negative lags. This
suggests that the relationship between the two series is “instantaneous” (in yearly data) rather
than delayed or distributed over several years. Recall the nonsignificance of lagged predictors

from our earlier OLS regression.
Xcorr wNAO fylltemp if tin(1973,1997), lags (9) xlabel (-9(1)9, grid)

. Figure 13.9
Cross-correlogram
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If we list our input or independent variable first in the xcorr command, and the output
or dependent variable second — as was done for Figure 13.9 — then positive lags denote
correlations between input at time ¢ and output at time ¢ +1, £ +2, etc. Thus, we see a positive
correlation of .394 between winter NAO index and Fylla temperature four years later.

The actual cross-correlation coefficients, and a text version of the cross-correlogram, can
be obtained with the table option:

Xxcorr wNAO fylltemp if tin(1973,1997) + lags(9) table

=] 0 1
LAG CORR [Cross—correlation]
-9 -0.0541 |
-8 -0.0786 |
-7 0.1040 |
-6 -0.0261 |
-5 =0 ,0230 |
-4 0.3185 ==
-3 0..1212 |
-2 0.0053 |
=1 -0.0909 |
0 -0.6740  ———__ |
1 -0.1386 =1
2 -0.0865 |
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ARIMA Models

Autoregressive integrated moving average (ARIMA) models for time series can be estimated
through the arima command. This command encompasses simple autoregressive (AR),
moving average (MA), or ARIMA models of any order. It also can estimate structural models
that include one or more predictor variables and AR or MA errors. The general form of such
structural models, in matrix notation, is

v, =xB+p, [13.1]
where ), is the vector of dependent-variable values at time t, X, is a matrix of predictor-variable
values (usually including a constant), and 1, is a vector of disturbances. Those disturbances
can be autoregressive or moving-average, of any order. For example, ARMA(1,1) disturbances
are

B, =pH,., +0e,  +e, [13.2]

where p is the first-order autocorrelation parameter, 0 is the first-order moving average
parameter, and € is a white-noise (normal i.i.d.) disturbance. arima fits simple models as
a special case of [13.1] and [13.2], with a constant (B ,) replacing the structural term x , B.
Therefore, a simple ARMA(1,1) model becomes

¥y =Botu,
=Bo+PH,-|+9€,_x+€, [13.3]
Some sources present an alternative version. In the ARMAC(1,1) case, they show y, as a
function of the previous y value (y,_,) and the present (€ ) and lagged (€, ,) disturbances:
y,=a+py,, +0e, +e, [13.4]
Because in the simple structural model y, = B, + i ,, equation [13.3] (Stata’s version) is
equivalent to [13.4], apart from rescaling the constant & = (1-p)B,.
Using arima,an ARMA(1,1) model (equation [13.3]) can be specified in either of two
ways:
arima y, ar(l) ma (1)
or
arima y, arima(1,0,1)
The i in arima stands for “integrated,” referring to models that also involve differencing.
To fit an ARIMA(2,1,1) model, use

arima y, arima(2,1,1)

or equivalently,
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arima D.y, ar(1 2) ma(1l)

Either command specifies a model in which first differences of the dependent variable (y. - v, ,)
are a function of first differences one and two lags previous (y, , -y, ,andy, , -y, ,) and also
of present and previous disturbances (e .and € ).

To estimate a structural model in which y, depends on two predictor variables x (present
and lagged values, x, and x, , ) and w (present values only, w,), with ARIMA(1,0,1) errors, an
appropriate command would be

arima y x L.x w, arima(1,0,1)

Although seasonal differencing (e.g., S12 -¥ ) and/or seasonal lags (e.g., L12.x ) can be
included, as of this writing arima does not estimate multiplicative ARIMA(p,d,q)(P.D.0),
seasonal models.

A time series y is considered “stationary” if its mean and variance do not change with time,
and if the covariance between y, and Y - depends only on the lag «, and not on the particular
values of t. ARIMA modeling assumes that our series is stationary, or can be made stationary
through appropriate differencing or transformation. We can check this assumption informally
by inspecting time plots for trends in level or variance. Formal statistical tests for “unit roots”
(a nonstationary AR(1) process in which P, = 1, also known as a “random walk™) also help.
Stata offers three unit root tests, pperron (Phillips—Perron), dfuller (augmented
Dickey—Fuller),and dfgls (augmented Dickey—Fullerusing GLS, generally amore powerful
test than dfuller).

Applied to Fylla Bank temperatures, a pPperron testrejects the null hypothesis of a unit
root (P<.01).

- Pperron fylltemp, lag(3)

Phillips-Perron test for unit root Number of obs = 30

Newey-West lags = 3

—————————— Interpolated Dickey-Fuller -----—=---

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Valus

Z(rho) -29.871 -18.900 -13.300 =10.." 208

Z(t) -4.440 -3.580 -2.930 =2.230
* MacKinnon approximate p-value for Z(t) = 0.0003

Similarly, a Dickey—Fuller GLS test evaluating the null hypothesis that Sfyvlltemp has a unit
route (versus the alternative hypothesis that it is stationary with a possibly nonzero mean. but
no linear time trend) rejects this null hypothesis (P <.05). Both tests thus confirm the visual
impression of stationarity given by F igure 13.5.
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dfgls fylltemp, notrend maxlag(3)

DF-GLS for fylltemp Number of obs =
DF-GLS mu 1% Critical
[lags] Test Statistic Value
3 -2.304 -2.620
2 -2.479 -2.620
1 -3.008 -2.620

Opt Lag (Ng-Perron seq t) 0 [use maxlag(0)]
Min SC = =y46735952 at l=

Min MAIC = -.2683716 at la

3
oy
g

47
5% Critical 10%
Value
-2 211
-2.238
-2.261

1 with RMSE .6578912
2 with RMSE .6569351

Critical

For a stationary series, correlograms provide guidance about selecting a preliminary

ARIMA model:

AR(p) An autoregressive process of order p has autocorrelations that damp out
gradually with increasing lag. Partial autocorrelations cut off after lag p.

MA(q) A moving average process of order ¢ has autocorrelations that cut off after lag
q. Partial autocorrelations damp out gradually with increasing lag.
ARMA(p,g) A mixed autoregressive—moving average process has autocorrelations and
partial autocorrelations that damp out gradually with increasing lag.
Correlogram spikes at seasonal lags (for example, at 12, 24, 36 in monthly data) indicate a
seasonal pattern. Identification of seasonal models follows similar guidelines, but applied to
autocorrelations and partial autocorrelations at seasonal lags.

Figures 13.7-13.8 weakly suggest an AR(1) process, so we will try this as a simple model

for fylitemp.

arima fylltemp, arima(1,0,0) nolog

ARIMA regression

Sample: 1950 to 2000

Log likelihood = -48.66274
OPG
fylltemp Coef Std. Err z
fylltemp
_cons 1.68923 .1513096 11.16
ARMA
ar
L1l .4095759 .1482491 2.74
/sigma .627151 .0602859 10.42

Number of obs =

Wald chi2(

1)

Prob > chi2 =

[95% Conf.

.1170531

Interval]

.7020987

After we fitan arima model, its coefficients and other results are saved temporarily in
Stata’s usual way. For example, to see the recent model’s AR(1) coefficient and s.e., type

display [ARMA] b[Ll.ar]
.4095759

display [ARMA] se[Ll.ar]
.14924909
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The AR(1) coefficient in this example is statistically distinguishable from zero (t=2.74,
P =.006), which gives one indication of model adequacy. A second test is whether the residuals
appear to be uncorrelated “white noise.” We can obtain residuals (also predicted values, and
other case statistics) after arima through predict :
Predict fyllres, resid

corrgram fyllres, lags(15)

LAG AC PAC Q Prob>2
1 -0.0173 -7.0176 .0162 0.
2 0.0467 2.0465 « 13631, 0
3 0.0386 2.0497 22029 0.
4 0.0413 0496 31851 ‘0.
5 -0.1834 -2.2450 2:2955 Q.
6 -0.0498 -2.0602 2.4442 0.
7 0.1532 2:2158 3.8852 0.
8 -0.0567 -..0726 4.087 0.
9 -0.2055 -735.3232 6.8055 0.
10 =0:1156 ~73.2418 7.6865 0.
1.0 0.1397 3.2794 90051 0,621 = | -=
12 -0.0028 J.1606 9.0057 0.70:2- |-
13 0.1091 -.0647 9.8519 0.70¢: I
14 0.1014 -7.0547 10.603 0.71¢: {
15 -0.0673 -7.2837 10.943 0.75¢¢ -—

corrgram’s QO test finds no significant autocorrelation among residuals out to lag 15. We
could obtain exactly the same result by requesting a wntes tq (white noise test O statistic)
for 15 lags.

wntestq fyllres, lags (15)

Portmanteau test for white noise

Portmanteau (Q) statistic = 10.9435
Prob > chi2(15) = 0.7566

By these criteria, our AR( 1) or ARIMA(1,0,0) model appears adequate. More complicated
versions, with MA or higher-order AR terms, do not offer much improvement in fit.

A similar AR(1) model fits Svlltemp over just the years 1973-1997. During this period,
however, information about the winter North Atlantic Oscillation (wNAO) significantly
improves the predictions. For this model, we include wNA4O as a predictor but keep an AR(1)
term to account for autocorrelation of errors.
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arima fylltemp wNAO if tin(1973,1997), ar(1l) nolog

ARIMA regression

Sample: 1973 to 1997 Number cf cks = 28
Wald chi2(2) = 12.7.3
Log likelihood = -10.3481 ‘ Prob > chi?2 = 0..0017
| OPG
fylltemp | Coef Std. Err Z P>lz| 135% Conf. Interval
_____________ e e
fylltemp | 5
wNAO | =.1736227 .0531688 -3.27 0.001 =52 778317 -.J854238
_cons | 1.703462 .1348599 12.63 0.000 1.439141 1.%87732
_____________ +——.—_________.__________________..___.________________________..___.__
ARMA |
ar |
Ll | 2965222 .237438 1425 0.212 -.1688478
_____________ o e e
/sigma | .36536 .0654008 5.59 0.000 .2371767

pPredict fyllhat
(option xb assumed; predicted values)

label variable fyllhat "predicted temperature”

pPredict fyllres2, resid

corrgram fyllres2, lags(9)

= 0 1 =1 0 1

LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autccor!

.4114 | =

-0.1690 -0.2334 4.0447
-0.0234 0.0722 4.0776

0.2658 0.3062 8.4168
-0.0726 -0.2236 8.7484
-0.1623 -0.0999 10.444

.2973 == L=
.3640 | =
.3157 - !

WCoOJdo s WN -
Ooooocooooo
e s .

w

o

w

o

1

!

wNAO has a significant, negative coefficient in this model. The AR(1) coefficient now is
not statistically significant. If we dropped the AR term, however, our residuals would no longer
pass corrgram’s test for white noise. Figure 13.10 graphs the predicted values, fillhat,
together with the observed temperature series Sylltemp. The model does reasonably well in
fitting the main warming/cooling episodes and a few of the minor variations. To have the y-axis
labels displayed with the same number of decimal places (0.5, 1.0, 1.5,... instead of .5, 1, 1.5....)
in this graph, we specify their format as %2.1f .
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graph twoway line fylltemp year if tin (1973, 1997)
|| line fyllhat year if tin(1973, 1997)
|1 , ylabel(.5(.5)2.5, angle (horizontal) format (%2.1€f))
ytitle ("Degrees C") xlabel (1975(5)1995, grid) xtitle("")
legend(label (1 "observed temperature")
label (2 "model prediction") position(5) ring(0) col(1))

Figure 13.10

25

Degrees C

observed temperature
| eess N e model prediction

1975 1980 1985 1990 1995

A technique called Prais—-Winsten regression ( prais ), which corrects for first-order
I autoregressive errors, can also be illustrated with this example.

prais fylltemp wNAO if tin(1973,1997), nolog

I Prais-Winsten AR(l) regressicn -- iterated estimates
Number of obs = 25
B( X 23) = 23.14
Prob > F = 0.0001
I R-squared = 0.5016
Adj R-squared = 0.4799
Root MSE = .380093
: fylltemp | Toef. Std. Exzr. £ PyiR [95% Conf. Interval]
_____________ o e e T
wWNAS | -.1735¢ .0375€7 -4.62 0.0C3 -«2512733 -.0958468
l _cons | 1.703436 .1153695 14.77 0.000 1.464776 1.942096
_____________ o e e e e e e e e e e e e S S e e e e

rho | 2951576

l Durbin-Watson statistic (original) 1.344998
Durbin-Watson statistic (transformed) 1.789412

prais isanolder method, more specialized than arima. Its regression-based standard
I errors assume that rho (p) is known rather than estimated. Because that assumption is untrue,

' — _ ; i esmee— 4
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the standard errors, tests. and confidence intervals given by prais tend to be anti-
conservative, especially in small samples. prais provides a Durbin-Watson statistic d=
1.789). In this example. the Durbin-Watson test agrees that after fitting the model, no
significant first-order autocorrelation remains.



Introduction to Programming

As mentioned in Chapters 2 and 3. we can create a simple type of program by writing any
sequence of Stata commands in a text (ASCII) file. Stata’s Do-file Editor (click on Window —
Do-file Editor or the icon <& ) provides a convenient way to do this. After saving the do-file,

we enter Stata and type a command with the form do filename that tells Stata to read
Jilename.do and execute whatever commands it contains. More sophisticated programs are
possible as well, making use of Stata’s built-in programming language. Many of the commands
used in previous chapters actually involve programs written in Stata. These programs might
have originated either from Stata C orporation or from users who wanted something beyond
Stata’s built-in features to accomplish a particular task.

Stata programs can access all the existing features of Stata, call other programs that call
other programs in turn. and use model-fitting aids including matrix algebra and maximum like-
lihood estimation. Whether our purposes are broad, such as adding new statistical techniques,
or narrowly specialized, such as managing a particular database, our ability to write programs
in Stata greatly extends what we can do.

Substantial books (Stata Programming Reference Manual; Mata Reference Manual,
Maximum Likelihood Estimation with Stata) have been written about Stata programming. This
engaging topic is also the focus of periodic NetCourses (see www.stata.com) and a section of
the User’s Guide. The present chapter has the modest aim of introducing a few basic tools and
giving examples that show how these tools can be used.

Basic Concepts and Tools

Some elementary concepts and tools, combined with the Stata capabilities described in earlier
chapters, suffice to get started.

Do-files

Do-files are ASCII (text) files, created by Stata’s Do-file Editor, a word processor, or any other
text editor. They are typically saved with a .do extension. The file can contain any sequence
of legitimate Stata commands. In Stata, typing the following command causes Stata to read
Jilename.do and execute the commands it contains:

do filename

361
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Each command in filename.do. including the last, must end with a hard return — unless we
have reset the delimiter to some other character, through a #delimit command. For
example,
#delimic

This sets a semicolon as the end-of-line delimiter, so that Stata does not consider a line finished
until it encounters a semicolon. Setting the semicolon as delimiter permits a single command
to extend over more than one physical line. Later, we can reset “carriage return” as the usual
end-of-line delimiter by typing the following command:

#delimit cr

Ado-files

Ado (automatic do) files are ASCII files containing sequences of Stata commands, much like
do-files. The difference is that we need not type do filename in order to run an ado-file.
Suppose we type the command

clear

As with any command, Stata reads this and checks whether an intrinsic command by this name
exists. Ifa clear command does not exist as part of the base Stata executable (and, in fact,
it does not), then Stata next searches in its usual “ado™ directories, trying to find a file named
clear.ado. If Stata finds such a file (as it should), it then executes whatever commands the file
contains. Ado-files have the extension .ado. User-written programs commonly go in a
directory named C:\ado\personal. whereas the hundreds of official Stata ado-files get installed
in C:\stata\ado. Type sysdir to see a list of the directories Stata currently uses. Type
help sysdir or help adopath for advice on changing them.

The which command reveals whether a given command really is an intrinsic, hardcoded
Stata command or one defined by an ado-file; and if it is an ado-file, where that resides. For
example, logit isabuilt-incommand, butthe logistic commandisdefined by anado-
file named logistic.ado:

which logit

built-in command: logits

which logistic
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! version 3.1.9 0loct2002

This distinction makes no difference to most users, because logit and logistic work
with similar ease and syntax when called.

Programs

Both do-files and ado-files might be viewed as types of programs, but Stata uses the word
“program” in a narrower sense, to mean a sequence of commands stored in memory and
executed by typing a particular program name. Do-files, ado-files, or commands typed
interactively can define such programs. The definition begins with a statement that names the
program. For example, to create a program named count5, we start with

pregram count5
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Next should be the lines that actually define the program. Finally, we give an end command,
followed by a hard return:

end
Once Stata has read the program-definition commands, it retains that definition of the
program in memory and will run it any time we type the program’s name as a command:
count5
Programs effectively make new commands available within Stata, so most users do not need
to know whether a given command comes from Stata itself or from an ado-file-defined program.

As we start to write a new program, we often create preliminary versions that are
incomplete or just unsuccessful. The program drop command provides essential help
here, allowing us to clear programs from memory so that we can define a new version For
example, to clear program count5 from memory, type

program drop count$5

To clear all programs (but not the data) from memory, type

program drop _all

Local Macros

Macros are names (up to 31 characters) that can stand for strings, program-defined results, or
user-defined values. A local macro exists only within the program that defines it, and cannot
be referred to in another program. To create a local macro named iterate, standing for the
number 0, type

local iterate = 0
To refer to the contents of a local macro (0 in this example), place the macro name within
left and right single quotes. For example,
display ‘iterate'
0
Thus, to increase the value of iterate by one, we write

local iterate = ‘iterate' + 1

Global Macros

Global macros are similar to local macros, but once defined, they remain in memory and can
be used by other programs. To referto a global macro’s contents, we preface the macro name
with a dollar sign (instead of enclosing the name in left and right single quotes as done with
local macros):

global distanczs = 73

display S$distzace * 2
146
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Version

Stata’s capabilities and features have changed over the years. Consequently, programs written
for an older version of Stata might not run directly under the current version. The version
command works around this problem so that old programs remain usable. Once we tell Stata
for what version the program was written, Stata makes the necessary adjustments and the old
program can run under a new version of Stata. For example, if we begin our program with the
following statement. Stata interprets all the program’s commands as it would have in Stata 6:

version £

Comments

Stata does not attempt to execute any line that begins with an asterisk. Such lines can therefore
be used to insert comments and explanation into a program, or interactively during a Stata
session. For example,

* This entirs line

is a comment.

Alternatively, we can include a comment within an executable line. The simplest way to do so
is to place the comment after a double slash, // (with at least one space before the double
slash). For example,

summarize income education // this part is the comment
A triple slash (also preceded by at least one space) indicates that what follows, to the end of the

line, is a comment; but then the following physical line should be executed as a continuation .
of the first. For example,

summarize income education /// this part is the comment
occupation ace
will be executed as if we had typed
summarize income education occupation age
With or without comments, the triple slash provides an easy way to include long command lines
inaprogram. For example, the following lines would be read asone table command,even
though they are separated by a hard return.

table gender kids school if contam==1, contents (mean lived ///
median lived count lived)

If our program has more than a few long commands, however, the #delimit ; approach
(described earlier; also see help delimit ) might be easier to write and read.
It is also possible to include comments in the middle of a command line, bracketed by /*
and */ . For example,
summarize income /* this is the comment */ education occupation
If one line ends with /* , and the next begins with */ , then Stata skips over the line break

and reads both lines as a single command — another line-lengthening trick sometimes found
in programs.



Introduction to Programming 365

Looping

There are a number of ways to create program loops. One simple method employs the
forvalues command. For example, the following program counts from 1 to 5.
* Program that .counts from one to five
program count5
version 8.0
forvalues i = 1/5 ¢{
display ‘i
}
end
By typing these commands, we define program count5. Alternatively, we could use the
Do-file Editor to save the same series of commands as an ASCII file named count5.do. Then,
typing the following causes Stata to read the file:

do count5
Either way, by defining program count5 we make this available as a new command:

countb

s WM.

The command

forvalues i = 1/5 ¢{

assigns to local macro i the consecutive integers from 1 through 5. The command
display ‘i’

shows the contents of this macro. The name i is arbitrary. A slightly different notation
would allow us to count from 0 to 100 by fives (0, 5, 10, ..., 100):

forvalues j = 0(5)100 {

The steps between values need not be integers. To count from 4 to 5 by increments of .01
(4.00,4.01,4.02, ..., 5.00), write

forvalues k = 4(.01)5 {

Any lines containing valid Stata commands, between the opening and closing curly brackets { },
will be executed repeatedly for each of the values specified. Note that nothing (on that line)
follows the opening bracket, and that the closing bracket requires a line of its own.

The foreach command takes a different approach. Instead of specifying a set of
consecutive numerical values, we give a list of items for which iteration occurs. These items
could be variables, files, strings, or numerical values. Type help foreach to see the
syntax of this command.

forvalues and foreach create loops that repeat for a pre-specified number of times.
If we want looping to continue until some other condition js met, the while command is
useful. A section of program with the following general form will repeatedly execute the
commands within curly brackets, so long as expression evaluates to “true”:
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while expression ({
command A
command B
}

command 2

As in previous examples, the closing bracket } should be on its own separate line, not at the
end of a command line.

When expression evaluates to “false,” the looping stops and Stata goes on to execute
command Z. Parallel to our previous example, here is simple program thatusesa while loop

to display onscreen the iteration numbers from 1 through 6:
* Program that counts from one to six
program co:=nté6
version 8.C
local iterzte =1
while "iterzte' <= 6 {
display "iterate'’
local iterzte = ‘iterazz' + 1
}
end

A second example ofa while loop appears in the gossip.ado program described later in this
chapter. The Programming Reference Manual contains more about programming loops.

If...else

The if and else commands tell a program to do one thing if an expression is true, and
something else otherwise. They are set up as follows:

if expression {
command A
command B

}
else {
command Z

For example, the following program segment checks whether the content of local macro
span is an odd number, and informs the user of the result.

if int('span',2) != (‘spaz' - 1)/2 {
i display "sgan is NOT &= odd number"
}
else {
display "sran IS an odZ number"

)

W = 2

Programs define new commands. In some instances (as with the earlier example, count5),
we intend our command to do exactly the same thing each time it is used. Often, however, we
need a command that is modified by-arguments-such-as-variable names or options. There are

it l Arguments
|

R
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two ways we can tell Stata how to read and understand a command line that includes arguments.
The simplest of these is the args command.

The following do-file (l/istresl.do) defines a program that performs a two-variable
regression, and then lists the observations with the largest absolute residuals.

* Perform simple regression and list observaticns with &
* largest absolute residuals.
* listresl Yvariable Xvariable # ZDvariable

program listresl, sortpreserve
version 8.0
args Yvar Xvar number-.id
quietly regress “Yvar' “Xvar'
capture drop Yhat
capture drop Resid
capture drop Absres
quietly predict Yhat
quietly predict Resid, resid
quietly gen Absres = abs(Resid)
gsort -Absres
drop Absres
list "id' ‘Yvar' Yhat Resid in I ' number'
end

Theline args Yvar Xvar number id tells Stata that the command 1istresid
should be followed by four arguments. These arguments could be numbers. variable names,
or other strings separated by spaces. The first argument becomes the contents of a local macro
named Yvar , the second a local macro named Xvar , and so forth. The program then uses
the contents of these macros in other commands, such as the regression:

quietly regress ‘Yvar' “Xvar'

The program calculates absolute residuals (4bsres), and then uses the gsort command
(followed by a minus sign before the variable name) to sort the data in high-to-low order, with
missing values last:

gsort -Absres
The option sortpreserve on the command line makes this program “sort-stable™: it
returns the data to their original order after the calculations are finished.

Dataset nations.dta, seen previously in Chapter 8, contains variables indicating life

expectancy (/ife), per capita daily calories (food), and country name (country) for 109 countries.
We can open this file, and use it to demonstrate our new program. A do command runs do-

file listres1.do, thereby defining the program listresi :
do listresl.do

Next, we use the newly-defined 1istresl command. followed by its four arguments.
The first argument specifies the y variable, the second x, the third how many observations to
list, and the fourth gives the case identifier. In this example, our command asks for a list of
observations that have the five largest absolute residuals.

listresl life food 5 country
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et T T +

| country life Yhat Resid |

| === |
Lw | Libya 60 76.6901 -16.69011
2. | Bhutan 44 60.49577 -16.49577
3. | Panama 72 58.13118 13.86882
4. | Malawi 45 58.58232 -13.58232
5. | Ecuador 66 52.45305 13.54695

e e e T —— +

Life expectancies are lower than predicted in Libya, Bhutan, and Malawi. Converselv. life
expectancies in Panama and Ecuador are higher than predicted, based on food supplies.

Syntax

The syntax command provides a more complicated but also more powerful way to read a
command line. The following do-file named /istres2.do is similar to our previous example. but
ituses syntax instead of args:

Perform simple or multiple regression and list
* observations with # largest absolute residuals.
* listres2 yvar xvarlist [Zf] [in], number (#) [id(varnams
program listres2, sortpreserve
version 8.0
syntax varlist(min=1) [if] [in], Number (integer) [Id(string)]
marksample touse
quietly regress “varlist' if “touse’
capture drop Yhat
capture drop Resid
capture drop Absres
quietly predict Yhat if “touse'
quietly predict Resid if “touse', resid
quietly gen Absres = abs(Resid)
gsort -Absres
drop Absres
list 'id" "1' Yhat Resid in 1/ number'
end

listres2 hasthe same purposeastheearlier 1istresl: itperforms regression. then
lists observations with the largest absolute residuals. This newer version contains several
improvements, however, made possible by the syntax command. Itis not restricted to two-
variable regression, as was listresl . listres2 will work with any number of
predictor variables, including none (in which case, predicted values equal the mean of 1. and
residuals are deviations from the mean). listres2 permits optional if and irn
qualifiers. A variable identifying the observations is optional with listres2 , instead of
being required as it was with 1istresl. For example, we could regress life expectancy on
Jfood and energy, while restricting our analysis to only those countries where per capita GNP
is above 500 dollars:
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do listres2.do

listres2 life food energy if gnpcap > 500, n(6) i(country)

o o e o e s 7 B 5t ot s +

|  country life LAt Resid

l ________________________________________
1. | YemenPDR 15 -15.349¢4
2. | YemenAR 45 -14.85823¢
3. | Libya 60 -13.6251¢%
4. | S_Africa 55 -12.914¢
5. | HongKong 75 11.3597¢

I ________________________________________
6 | Panama 72 BZ: 71758 10.222:22

The syntax line in this example illustrates some general features of the command:
syntax varlist(min=1) [if] [in], Number (integer) [Id(string) ]

The variable listfora 1istres? command is required to contain at least one variable name
(varlist (min=1) ). Square brackets denote optional arguments — in this example, the
if and in qualifiers, and also the id () option. Capitalization of initial letters for the
options indicates the minimum abbreviation that can be used. Because the svntax line in
our example specified Number (integer) Id (string). an actual command could be
written:

listres2 life food, number (6) id(country)

Or, equivalently,

listres2 life food, n(6) i (country)
The contents of local macro number are required to be an integer, and id isa string (such
as country, a variable’s name).

This example also illustrates the marksample command. which marks the subsample
(as qualified by if and in ) to be used in subsequent analyses.

The syntax of syntax is outlined in the Programming Manual. Experimentation and
studying other programs help in gaining fluency with this command.

Example Program: Moving Autocorrelation

The preceding sections presented basic ideas and example short programs. In this section, we
apply those ideas to a slightly longer program that defines a new statistical procedure. The
procedure obtains moving autocorrelations through a time series, as proposed for ocean-
atmosphere data by Topliss (2001). The following do-file, gossip.do, defines a program that
makes available a new command called gossip. Comments, in lines that beginwith * or
inphrases set offby // , explain what the program is doing. Indentation of lines has no effect

on the program’s execution, but makes it easier for the programmer to read.
capture program drop gossip // FOR WRITING g DEBUGGING; DELETE LATER
program gossip 5

version 8.0

* Syntax requires user to specify two variables (Yvar and TIMEvar), and

* the span of the moving wirdow. Optionally, the user can ask to generate
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* a new variable holding zutccorrelzticn
syntax varlist(min=1 max=2 nurmeric), GRaph;
if int('span'/2) != ('span' - 1)/2 i
display as error "Span mus:t be zn codd inzeger"
}
else {
* The first variable in “varl:ist' tecomes Yvar, the second TIMEvar.
tokenize ‘varlist'
local Yvar "1°'
local TIMEvar 2
tempvar NEWVAR
quietly gen ‘NEWVAR' =
local miss = 0
* spanlo and spanhi are _ocal sacrcs holding the cobservation number at the
* low and high ends of a parti:ular window. spanmid holds the observation
* number at the center of this winZow.
local spanlo = 0
local spanhi = ‘span’
local spanmid = int( span' )
while ‘spanlo' <= W =Tegent <
local spanhi = “scan' - “spz=nlo’
local spanlo = °“scgznlc' - 1
local spanmid = “spanmii' + °
* The next lines check whether miss: s exist within the window.
* If they do exist, then no a:uzocor s calculated and we

* move on to the next window. rmed that this occurred.
-

quietly summ Yv**' in “sparnie’d’ ahi

if r(N) != ‘span’
local miss = 1
}
* The value of NEWVAR in obserwaticn “sranmii' is set equal to the firsz
1t ¢Z the row vector of autocorrelations

* row, first column (1,1) elex
* r(AC) saved by corrgrar.

else {
quietly corrgram ‘Yvar' in ‘svanlc'/'spanhi', lag(1l)
quietly replace 'NEWVAR' = el(r(&C),1,1) in ‘spanmid'

}
}

if "“graph" 1= *% i
The following graph command Zllustrates the use of comments tc cause
Stata to skip over line brezxs, so it reads the next two lines as If
* they were one.
graph twoway spike “NEWVAR' °"TIMEvar', yline(0) ///
ytitle ("First-order autocorrelaticns of “Yvar' (span ‘"span')"
}
if "miss' == 1 {
display as error "Cauti:zn: missing values exist"
}
if "‘generate'"™ != "" {
rename ‘NEWVAR' ‘cenerzze'
label variable “generazz' /

"First-order zutoccrrelazions of "Yvar' (span “span')"

end

As the comments note, gossip requires time series (tsset ) data. From an existing
time series variable, gossip calculates a second time series consisting of lag-1
autocorrelation coefficients within a moving window of observations — for example,a moving
9-year span. Dataset nao.dta contains North Atlantic climate time series that can be used for

illustration:
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"+ P
wNAO float %9.0g Winter NAO
WwNAO4 float %9.0g . intsr NAO smoothed
temp §leac %9.0¢ Mear zir temperature (C)
temp4 float %9.0g Mean zIr temperature smoothed

The variable remp records annual mean air temperatures at Stykkisholmur in west Iceland
from 1841 to 1999. temp4 contains smoothed values of temp (see Chapter 13). Figure 14.1
graphs these two time series. To visually distinguish between raw (temp) and smoothed
(temp4) variables, we connect the former with very thin lines. clwidth (vthin), and the
latter with thick lines, clwidth (thick). Type help linewidthstyle fora list of
other line-width choices.

graph twoway line temp year, clpattern(solid) clwidth(vthin)

|1 line temp4 year, clpattern(solid) clwidth(thick)
| + ytitle ("Temperature, degrees C") legend (off)

Figure 14.1
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To calculate and graph a series of autocorrelations of temp, within a moving window of 9
years, we type the following commands. They produce the graph shown in Figure 14.2.
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do gossip.do

gossip temp year, span(9) generate(autotemp) graph

Figure 14.2

5

First-order autocorrelations of temp (span 9)
0

-5

1850 1900 1950 2000
Year

In addition to drawing Figure 14.2, gossip created a new variable named autotemp:

describe autotemp

storage <Zisplay value
variable name tvoe fsrmat iabel
autotemp float %Z.0g

list year temp autotemp in 1/10

i e e B
| year teme gLeoremp
I _________________________
1. | 1841 2. %3 i
2. | 184z 4.34 I
3. | 1843 2.97 |
4. 1 1844 3.41 i
5. | 1845 3.62 -.2324837 |
| mmm e e |
6. | 1846 4,238 -.23883512 |
7. | 1847 4,453 -.2194607 |
8. | 1848 2.32 .2175247 |
9. | 1849 321 -.03303 |
10. | 1850 3.23 .2181154 |
o e +

autotemp values are missing for the first four years (1841 to 1844). In 1845, the autotemp
value (—.2324837) equals the lag-1 autocorrelation of temp over the 9-year span from 1841 to
1849. This is the same coefficient we would obtain by typing the following command:




Introduction to Programming 373

corrgram temp in 1/9, lag(l)
=1 0 1 -1 0 1
LAG =z PAC Q Prob>Q [Autocorrelation] [Partial Autocor)

1 -0.2:25 -0.2398 .66885 0.4135 = -1

In 1846, autoremp (-.0883512) equals the lag-1 autocorrelation of temp over the 9 years from
1842 to 1850. and so on through the data. autotemp values are missing for the last four years
in the data (1996 to 1999), as they are for the first four.

The pronounced Arctic warming of the 1920s, visible in the temperatures of Figure 14.1,
manifests in Figure 14.2 as a period of consistently positive autocorrelations. A briefer period
of positive autocorrelations in the 1960s coincides with a cooling climate. Topliss (2001)
suggests interpretation of such autocorrelations as indicators of changing feedbacks in ocean-
atmosphere svstems.

The do-file gossip.do was written incrementally, starting with input components such as
the syntax statement and span macros, running the do-file to check how these work, and then
adding other components. Not all of the trial runs produced satisfactory results. Typing the
following command causes Stata to display programs line-by-line as they execute, so we can
see exactly where an error occurs:

set trace on
Later, we can tumn this feature off by typing
set trace off

gossip.do contains a first line, capture program drop gossip, thatdiscards the
program from memory before defining it again. This is helpful during the writing and
debugging stage, when a previous version of our program might have been incomplete or
incorrect. Such lines should be deleted once the program is mature, however. The next section
describes further steps toward making gossip available as a regular Stata command.

Ado-File

Once we believe our do-file defines a program that we will want to use again, we can create an
ado-file to make it available like any other Stata command. For the previous example,
8ossip.do, the change involves two steps:

1. With the Do-file Editor, delete the initial “DELETE LATER?” line that had been inserted
to streamline the program writing and debugging phase. We can also delete the comment
lines. Doing so removes useful information, but it makes the program more compact and
easier to read.

2. Save our modified file, renaming it to have an .ado extension (for example, gossip.ado), in
anew directory. The recommended location is in C:\ado\personal; youmight need to create
this directory and subdirectory if they do not already exist. Other locations are possible,
but review the User’s Manual section on “Where does Stata look for ado-files?” before
proceeding.

Once this is done, we can use gossip as aregular command within Stata. A listing of

gossip.ado follows.

{P
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*
[
LD
(2]

w | L. Hamilten, Statistics with Stata .2704)

program gossip

version 8§

syntax varlist(min=1 max=2 rumeric), SPzn (integer) [GENerate (string) GRaph]
it imslVewn 2) != ('span' - 1)/2 |

display as error "Span must be ‘an c3= integer"

TIMEvar "2°'
tempvar NEWVAR

quietly corrgram
quietly replace

(szan “span')")

The program could be refined further to make it more flexible, elegant, and user-friendly.
Note the inclusion of comments stating the source and “version 2.0” in the first two lines, which
bothbegin *! . The comment refers to version 2.0 of gossip.ado, not Stata (an earlier version
of gossip.ado appeared in a previous edition of this book). The Stata version suitable for this
program is specified as 8.0 by the versior command a few lines later. Although the *!
comments do not affect how the program runs. they are visible to a which command:

. which gossip
c:\ado\personal\gossip.ado

*! wversion 2.0
*!' L. Hamilton, Statistics with Stata (z2004)

Once gossip.ado has been saved in the C:\ado\personal directory, the command gossip
could be used at any time. If we are following the steps in this chapter, which previously



Introduction to Programming 375

defined a preliminary version of gossip, then before running the new ado-file version we
should drop the old definition from memory by typing

program drop gossip

We are now prepared to run the final, ado-file version. To see a graph of span-15
autocorrelations of variable wNAO from dataset nao.dta, for example, we would simply open
nao.dra and type

- gossip wNAO year, span(15) graph

Help File

Help files are an integral aspect of using Stata. For a user-written program such as gossip.ado,
they become even more important because no documentation exists in the printed manuals. We
can write a help file for gossip.ado by using Stata’s Do-file Editor to create a texz file named
gossip.hlp. This help file should be saved in the same ado-file directory (for example,
C:\ado personal) as gossip.ado. _

Any text file. saved in one of Stata’s recognized ado-file directories with a name of the
form filename. hip. will be displayed onscreen by Stata whenwe type help filename. For
example, we might write the following in the Do-file Editor, and save it in directory
C:\ado personal as file gossipl.hlp. Typing help gossipl atany time would then cause
Stata to display the text.

help Zor gossic L. Hamilton

Moving first-orzZer autocorrelations

gossip yvar tirsvar, span(#) [ generate(newvar) graph ]
Description

calculates first-order autocorrelations of time series

yvar, within a moving window of span #. For example, if we
specify span(7) gen(new), then the first

throuch 3rd val:es of new are missing. The 4th value of new
equals the lag-l autocorrelation of yvar across observations 1
throuch 7. Ths 5th value of new equals the lag-1 autocorrelation
of yvar across ctoservations 2 through 8, and so forth. The last
3 valuss of new zre missing. See Topliss (2001) for a rationale
and arolicatiornz of this statistic to atmosphere-ocean data.
Statistics witZ 3Stata (2004) discusses the gossip program itself.

gossic requires tsset data. timevar is the time
variact’e tc be :sed for graphing.

Optiors

span (#) speciZies the width of the window for
calculatng autocorrelations. This option is required; 5
# should be an odd integer.

gen(newvar) crzates a new variable holding the
autocorrslation coefficients.
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h reguests 2 spike plot of lag-1 autocorrelations vs.

30ssip water month, span (13) graph
Oossip water month, span(9) gen (autowater)
gossip water month, span(l7) gen(autowater) graph

Hamiltor, Lawrence C. 2004. Statistics with Stata. Pacific Grove,

Topliss, Brenda J. 2001. "Climzate variability I: A conceptual apgroach to
ocean-atmosphere feedback." 1In Zbstracts for AGU Chapman Conference, The
North Atlantic Oscillation, Nov. 28 - Dec 1, 2000, Ourense, Spain.

Nicer help files containing links, text formatting, dialog boxes, and other features can be
designed using Stata Markup and Control Language (SMCL). All official Stata help files, as
well as log files and onscreen results, employ SMCL. The following is an SMCL version of
the help file for gossip. Once this file has been saved in C:\ado\personal with the file name
gossip.hip. typing help gossip will produce a readable and official-looking display.

{smcl}

{* Laug2003}{.:.}

{hline}

help for {hi:gossip}{right: (L. Hzmilton) }
{hline}

{title:Moving first-order autocorrelations}

{p 8 12} {cmd:gossip} {it:yvar timevar} {cmd:,} {cmdab:sp:an}{cmd: (}
{it:#}{cmd:)} [ {cmdab:gen:erate}{cmd:(}(it:newvar}{cmd:)}
{cmdab:gr:aph} ]

{title:Description}

{plicmd:gossip} calculates first-order autocorrelations of time series
{it:yvar}, within a moving window of span {it:#}. For example, if we
specify {cmd:span(}7{cmd:)} {cmd:gen(}{it:new}{cmd:)}, then the first
through 3rd values of {it:new} ars missing. The 4th value of {it:new}
equals the lag-1 autocorrelation of {it:yvar} across observations 1
through 7. The S5th value of {it:new} equals the lag-1 autocorrelation
of {it:yvar} across observations 2 through 8, and so forth. The last
3 values of {it:new} are missing. See Topliss (2001) for a rationals
and applications of this statist:iz to atmosphere-ocean data.
{browse "http://www.stata.com/bockstore/sws.html":Statistics with Stata}
(2004) discusses the {cmd:gossic: program itself. {p_end}

{p}{cmd:gossip} reguires {cmd:tsszt} data. {it:timevar} is the time
variable to be used for graphing. :p end}

{title:Options}

{p 0 4}{cmd:span(}{it:#}{cmd:)} specifies the width of the window for
calculating autocorrelations. This option is required; {it:#} should be
an odd integer.


http://www.stata.com/bockstore/sws.html%2522:Statistics
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{p O 4}{cmd:gen(}{it:newvar}{cmd:)} creates a new variazzle =:ld:-3 ths
autocorrelation coefficients.

{p 0 4} {cmd:graph} requests a spike plot of lag-1 &utoccrrelztizos vs.
{it:timevar}.

{title:Examples}

{p 8 12} {inp:. gossip water month, span(13) graph}{p erz}

{p 8 12} {inp:. gossip water month, span(9) gen (autcwater) }{z en:z

{p 8 12}{inp:. gossip water month, span(17) gen(autowatsr) zxaph ‘p =nz
{title:References}

{p 0 4}Hamilton, Lawrence C. 2004.

{browse "http://www.stata.com/bookstore/sws.htm;":S:a*;s:i:s witn Stazz).
Pacific Grove, Ca: Duxbury. {p_end}

=

{p 0 4}Topliss, Brenda J. 2001. "Climate variability I:
approach to ocear-atmosphere feedback." In Abstraczs f:
Conference, The North Atlantic Oscillation, Nov. 2& - L=
Spain. citation.{p_end}

The help file begins with { smc1 }, which tells Stata to process the fi’z as SMCL. Curly
brackets {} enclose SMCL codes, many of which have the form {ccomand:t=xt} or
{command arguments:text}. The following examples illustrate ow t+ese codes are
interpreted.

{hline} Draw a horizontal line.

{hi:gossip} Highlight the text “gossip”.

{title:Moving...} Display the text “Moving . . .” as a title.

{right:L Hamilton}  Right-justify the text “L. Hamilton”.

{p 8 12} Format the following text as a paragraph. with the first line
indented 8 columns and subsequent lines indented 12.

{cmd:gossip} Display the text “gossip” as a command. Thzt is. show “gossip”

with whatever colors and font attributes are presently defined as
appropriate for a command.

{it:yvar} Display the text “yvar” in italics.

{cmdab:sp:an} Display “span” as a command, with the letters “sp” marked as the
minimum abbreviation.

{p} Format the following text as a paragraph, tntil :srminated by
{p_end}.

{browse "http://www.stata.com/bookstore/sws.html":S:a:;s:;:s

Link the text “Statistics with Stata™ to the web address (URL)
http://www.stata.com/bookstore/sws.html. C [icking on the words
“Statistics with Stata” should then launch vour browser and
connect it to this URL.

The Programming Manual supplies details about using these and many other SMCL
commands. . s R —


http://www.stata.com/bookstore/sws.html%2522:Stat
http://www.stata.com/bookstore/sws.html
http://www.stata.com/bookstore/sws.html%25e2%2580%259d:Szatiszic%7E
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Matrix Algebra

Matrix algebra provides essential tools for statistical modeling. Stata’s matrix commands and
matrix programming language (Mata) are too diverse to describe adequately here; the subject
requires its own reference manual (Mata Reference Manual), in addition to many pages in the
Programming Reference Manual and User’s Guide. Consult these sources for information
about the Mata language, which is new with Stata 9. The examples in this section illustrate
carlier matrix commands, which also still work (hence the placement of version 8.0
commands at the start of each program).

The built-in Statacommand regress performs ordinary least squares (OLS) regression,
among other things. But as an exercise, we could write an OLS program ourselves. ols/.do
(following) defines a primitive regression program that does nothing except calculate and
display the vector of estimated regression coefficients according to the familiar OLS equation:

b=(X'X)" X'y

* A very simgle program, "olsl" estimates linear regression
* coefficients using ordinary least squares (OLS).
program olsl
version 8.0
* The syntax allows only for a variable list with one or more
* numeric variables.
syntax varlist(min=1 numeric)
* "tempname..." assicns names to temporary matrices to be used in this
program. When olsl has finished, these matrices will be dropped.
tempname crossYX crossX crossY b

*

* "matrix accum..." forms a cross-product matrix. The K variables in
* varlist, and the N observations with nonmissing values on all K variables,
* comprise an N row, K column data matrix we might call yX.
* The cross product matrix crossYX equals the transpose of yX times yX.
* Written algebraically:
® crossYX = (yX)'yX
quietly matrix accum ‘crossYX' = ‘varlist'
* Matrix crossX extracts rows 2 through K, and columns 2 through K,
%

from crossyYX:
crossX = X'X
matrix ‘crossX' = ‘crossYX'[2...,2...]
* Column vector crossY extracts rows 2 through K, and column 1 from crossY¥X:
creossY = X'y
matrix ‘crossY' = ‘crossYX'[2...,1]
* The column vector b contains OLS regression coefficients, obtained by
* the classic estimating equation:
* b = inverse (X'X)X'y
matrix ‘b' = syminv('crossX') * ‘crossY'
* Finally, ws list the coefficient estimates, which are the contents of k.
matrix list 'b'
end

Comments explain each command in ols/.do. A comment-free version named ols2.do
(following) gives a clearer view of the matrix commands:
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program ols2
version 8.0
syntax varlist (min=1 numeric)
tempname crossYX crcssX crossY b

quietly matrix accum ‘crossYX' = ‘varlist'
matrix ‘crossX' = ‘crossYX'[2...,2...]
matrix ‘crossY' = ‘crossYX'[2...,1]
matrix 'b' = syminv( crossX') * ‘crossY'
matrix list ‘b’

end

Neither ols/.do nor ols2.do make any provision for in or if qualifiers. syntax errors,
| or options. They also do not calculate standard errors, confidence intervals, or the other
ancillary statistics we usually want with regression. To see Just what they do accomplish, we

will analyze a small dataset on nuclear power plants (reactor.dta):

Contains data from z:\da:z reactor.dta
obs: 2 Reactor decommissicning costs
(from Brown et al. 1986)
! vars: Z 1 Aug 2005 10:50
' size 122 (99.:% of memory free)
i storzce lay value
| variable name tycs at label variable izbel
2 Tttt
site stridg Reactor site
decom byte g Decommissioning cost, millions
, capacity intg g Generating capacity, megawatts
years byt= g Years in operation
start int fof Year operations started
close int g Year operations closed

The cost of decommissioning a reactor increases with its generating capacity and with the
, number of years in operation. as can be seen by using regress:

. regress decom capacity years

Source | SS df MsS = S
————————————— B e = 189.42
Model | 4666.1657_ 2 2333.0828¢ = L.08353
Residual | 24.63428¢: 2 12.3171442 = 0.9347
————————————— S e S e e S = D.9895
Total | £690.¢8: 4 1172.70 = 3.50096

decom | Coef Std. Err t P>|t] [95% Conf. Interval]
————————————— +_——._—-_——__—-_——___—__——_——__.______-__._._________-________.______..-
capacity | .175873¢ .0247774 7.10 0.019 .0692653 .2824825
years | 3:299314 .2643087 14 .75 0.005 2.762085 5.036543

_cons | -11.3996: 4.330311 =2.63 0.119 -30.03146 7.23219

Our home-brewed program o/s2.do yields exactly the same regression coefficients:
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. do ols2.do

. 0ls2 decom capacity years

__000003(3,1]
decom
capacity .1758739
years 3.8993139
_cons -11.399633

Although its results are correct, the minimalist o1s2 program lacks many features we
would want in a useful modeling command. The following ado-file. o/s3.ado, defines an
improved program named ols3 . This program permits in and if qualifiers, and
optionally allows specification of the level for confidence intervals. It calculates and neatly
displays regression coefficients in a table with their standard errors, # tests. and confidence
intervals.

*! version 2.0 1laug2003
*! Matrix demonstration: more complete OLS regressi:n prograr.
program ols3, eclass

version 8.0

syntax varlist(min=1 numeric) [in] ([if] [, Level :ntecer £I lewsl)]
marksample touse

tokenize "‘varlist'"

tempname crossYX crossX crossY b hat V

quietly matrix accum ‘crossYX' = ‘varlist' if “t:cuise!
local nobs = r(N)

local df = ‘nobs' - (rowsof('crossYX') - 1)

matrix ‘crossX' = ‘crossYX'[2...,2...]

matrix ‘crossY' = ‘crossY¥X'[2...,1]

matrix 'b' = (syminv(‘'crossX') * ‘crossY¥')'

matrix ‘hat' = ‘b' * ‘crossY'

matrix V' = syminv('crossX') * (‘cross¥YX'([l,1] - 'h

ereturn post ‘b' ‘'V', dof('df') obs( ' nobs') depnz==
esample ( "touse')

ereturn local depvar "'1'"

ereturn local cmd "ols3"

if “level' < 10 | “level' > 99 {
display as error "level( ) must be between 12 z=nd
exit 198

0

0
1
)

[

}
ereturn display, level( level')
end

Because ols3.ado is an ado-file, we can simply type ols3 asa command:

. 01ls3 decom capacity years

decom | Coef Std. Err 2 P> f82x ZgonZ. Interval]
_____________ i T S e e e e e e
capacity | .1758739 .0247774 710 0.01: .G€22653 .2824825
years | 3.899314 .2643087 14.75 0.00: 2.722085 5.036543

_cons | -11.39963 4.330311 -2.63 0.11¢ -30.2214¢ 7.23219

ols3.ado contains familiar elements including syntax and marksample commands,
aswell as matrix operations built upon those seen earlier in o/s/.do and ols2.do. Note the
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use of a right single quote ( ' ) as the “matrix transpose™ operator. We write the transpose of

' the coefficients vector (syminv (*crossX' ) * “crossY') as follows:
(syminv (' crossX') ~* ‘crossy')'!

! The ols3 program is defined as e-class, indicating that this is a statistical model-

estimation command:
program ols3, eclass

E-class programs store their results with e () designations. After the previous ols3
command, these have the following contents:

ereturn list

scalars:
e () 5
) e(df_r) = 2
macros:
e{emd) : "gls3an
e (depvar) : "decom"
|
matrices:
e (b L% 3
eV 3x 3

, functions:
e(sample)

l . display e (N)
i
5

matrix list e (b)
eilb) [1,3]
yl -1758733  3.899313% -11,300£33

matrix list e (V)

symmetric e(V) (32, 3!

0

capa

.

¥

)
{ > I 5 B e

O

E
-
n
n

w
I

The e () results from e<lass programs remain in memory until the next e-class command.
In contrast, r-class programs such as summarize store their results with r () designations,
and these remain in memory only until the next e- or r-class command.

| I Several ereturn lines in o/s3.ado save the e () results, then use these in the output
display :
ereturn post ‘b' "V', dof('df') obs ('nobs') depname(‘1') ///
l esample (' touse')
The above command sets the contents of e () results, including the coefficient vector (b)

and the variance—covariance matrix (V). This makes all the post-estimation features
detailed in help estimates and help postest available. Options specify the
residual degrees of freedom ( df ), number of observations used in estimation ( nobs ),
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dependent variable name ( "1 ' . meaning the contents of the first macro obtained when we
tokenize varlist ), and estimation sample marker ( touse ).

ereturn local depvar " 1i'"
This command sets the name of the dependent variable, macro 1 after tokenize
varlist, to be the contents of macro e (depvar) .

ereturn local cmd "ol_s3"
This sets the name of the command, ols3, as the contents of macro e (cmd) .
ereturn display, level (" lz-—-z."'")
The ereturn displzy command displays the coefficient table based on our previous
ereturn post . This table follows a standard Stata format: its first two columns
contain coefficient estimates (from b ) and their standard errors (square roots of diagonal
elements from V). Further columns are ¢ statistics (first column divided by second), two-
tail 7 probabilities, and confidence intervals based on the level specified in the ols3
command line (or defaulting to 93%).

Bootstrapping

Bootstrapping refers to a process of repeatedly drawing random samples, with replacement,
from the data at hand. Instead of trusting theory to describe the sampling distribution of an
estimator, we approximate that distribution empirically. Drawing & bootstrap samples of size
n (from an original sample also size n) yields k new estimates. The distribution of these
bootstrap estimates provides an empirical basis for estimating standard errors or confidence
intervals (Efron and Tibshirani 1986: for an introduction, see Stine in Fox and Long 1990).
Bootstrapping seems most attractive in situations where the statistic of interest is theoretically
intractable, or where the usual theory regarding that statistic rests on untenable assumptions.

Unlike Monte Carlo simulations. which fabricate their data, bootstrapping typically works
from real data. For illustration, we tumn to islands.dra, containing area and biodiversity
measures for eight Pacific Island groups (from Cox and Moore 1993).

Contains data from c:\datz islz-=:.d-2
obs: 2 facific _sland biodiversity
{Cox & Moocre 1993)
vars: 4 1 Aug 2005 10250
size: 208 ;
storage
variable name typ ariable label
island str Island group
area flo Land area, km"2
birds byt Number of bird genera
plants int Number flowering plant genera
Sorted by:

Suppose we wish to form a confidence interval for the mean number of bird genera. The
usual confidence interval for a mean derives from a normality assumption. We might hesitate
to make this assumption, however, given the skewed distribution that, even in this tiny sample
(n = 8), almost leads us to reject-nommality: oo omim
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sktest birds

Skewness/Kurtcsis tests for Normality
——————— joint -=----
ariable ! Pr (Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
birds | 0.079 0.181 4.75 0.0928

Bootstrapping provides a more empirical approach to forming confidence intervals. An r-
class command, summarize, detail unobtrusively stores its results as a series of

macros. Some of these macros are:
r (N) Number of observations
r (mean) Mean
r (skewness) Skewness

r(min) Minimum

r (max) Maximum

r (p50) 50th percentile or median
r(var) Variance

r (sum) Sum

r(sd) Standard deviation

Stored results simplify the job of bootstrapping any statistic. To obtain bootstrap
confidence intervals for the mean of birds, based on 1,000 resamplings, and save the results in
new file boot! dta, type the following command. The output includes a note warning about the
potential problem of missing values, but that does not apply to these data.

. bs "summarize birds, detail" "r(mean)", rep(1000) saving (bootl)

command: summarize birds , detail

statistic bs 1 = r (mean)

Warning: Since summarize is not an estimation command or does not set
efsamplie), bootstrap has no way to determine which observations are
used in calculating the statistics and so assumes that all
ccservations are used. This means no observations will be excluded
from the resampling due to missing values or other reasons.

If the zssumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure the dataset in
memory c<ontains only the relevant data.

3ootstrap statistics Number of obs = 8
Replications = 1000
Variable | Reps Observed Bias Std. Err [95% Conf. Interval]
————————————— +————-———-——————————-——————————————————-———————-——-———————————————-—
_bs 1 | 1000 47.625 -.475875 12.39088 23.30986 71.94014 (N)
| 25.75 74.8125 (P)
| 27 18.25 (BC)
Note: N = normal
P = percentile

BC = bias-corrected
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The bs command states in double quotes what analysis is to be bootstrapped ( " summ
birds, detail" ). Following this comes the statistic to be bootstrapped, likewise in its
own double quotes ( "r (mean) " ). More than one statistic could be listed, each separated by
a space. The example above specifies two options:

rep(1000) Calls for 1,000 repetitions, or drawing 1,000 bootstrap samples.
saving (boot1) Saves the 1,000 bootstrap means in a new dataset named boot].dta.

The bs results table shows the number of repetitions performed and the “observed”
(original-sample) value of the statistic being bootstrapped — in this case, the mean birds value
47.625. The table also shows estimates of bias, standard error, and three types of confidence
intervals. “Bias” here refers to the mean of the & bootstrap values of our statistic (for example,
the mean of the 1,000 bootstrap means of birds), minus the observed statistic. The estimated
standard error equals the standard deviation of the k bootstrap statistic values (for example, the
standard deviation ofthe 1,000 bootstrap means of birds). This bootstrap standard error (12.39)
is less than the conventional standard error (13.38) calculated by ci :

ci birds

.....

Normal-approximation (N) confidence intervals in the bs table are obtained as follows:
observed sample statistic + ¢ x bootstrap standard error

where 7 is chosen from the theoretical 7 distribution with k — 1 degrees of freedom. Their use
is recommended when the bootstrap distribution appears unbiased and approximately normal.

Percentile (P) confidence intervals simply use percentiles of the bootstrap distribution (for
a 95% interval, the 2.5th and 97.5th percentiles) as lower and upper bounds. These might be
appropriate when the bootstrap distribution appears unbiased but nonnormal.

The bias-corrected (BC) interval also employs percentiles of the bootstrap distribution, but
chooses these percentiles followinga normal-theory adjustment for the proportion of bootstrap
values less than or equal to the observed statistic. When substantial bias exists (by one
guideline. when bias exceeds 25% of one standard error), these intervals might be preferred.

Since we saved the bootstrap results in a file named boot1.dta, we can retrieve this and
examine the bootstrap distribution more closely if desired. The saving (bootl) option
created a dataset with 1.000 observations and a variable named _bs_1,holding the mean of each
bootstrap sample.

Contains data from c:\data\bootl.dta

obs: 1,000 bs: summarize birds, detail
vars: 1 1 Aug 2005 135:10
size: 8,000 (99.9% of memory free)
storage display value
variable name type format label variable label
bs 1 float %9.0g r (mean)

Sorted by:



Introduction to Programming 385

summarize
Variable | Obs Mean Std. Dev. Min Max
_____________ +____-_____-______—--———————-—————_—____-_-—-—__-_-___.

_bs_1 | 10C2 47.14912 12.39088 14.625 92:.5

Note that the standard deviation of these 1,000 bootstrap means equals the standard error
(12.82) shown earlier in the bs results table. The mean of the 1,000 means minus the
observed (original sample) mean equals the bias:

47.14912 — 47.625 = —.47588

Figure 14.3 shows the distribution of these 1,000 sample means, with the original-sample
mean (47.625) marked by a vertical line. The distribution exhibits mild positive skew, but is
not far from a theoretical normal curve. .

histogram _bs 1, norm bcolor(gsl0) xaxis (1l 2) xline (47.625)
xlabel (47.635, axis(2)) xtitle("", axis(2))

Figure 14.3

47.635

Density
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.01

20 40 60 80 100
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Biologists have observed that biodiversity, or the number of different kinds of plants and
animals, tends to increase with island size. In islands.dta, we have data to test this proposition
with respect to birds and flowering plants. As expected, a strong linear relationship exists
between birds and area:
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regress birds area

Source | 3s df MS Number of obs = 8
e e e S SRS S e s i e S S e Fi{ 1, 6) = 162.96
Model | 94669,83255 1 9669.83255 Prob > F = 0.0000
Residual | 335.042445% 6 .59.3404082 R-squared = 0.9645
————————————— T e e Adj R-squared = (.9586
Total | 10025.875 7 1432.26786 Root MSE = 7.7033

birds | Coef Std. Ecrr P>|t| [95% Conf. Interval]
_____________ e P s
area | 2C26512 .0002077 12.77 *0.000 .002143 .0031594

cons | 13.97169 3.7%046 3.69 0.010 4.696773 23.24662

An e-class command, regress saves a set of e () results as noted earlier in this
chapter. It also creates or updates a set of system variables containing the model coefficients
( _blvarname}) and standard errors (_selvarname]). To bootstrap the slope and y
intercept from the previous regression, saving the results in file boor2.dta, type

bs "regress birds area" "_blarea] _b[_cons]", rep(1000)
saving (boot2)

command: regress birds area
statistics: _bs_1 = _blarea]
_bs 2 = _b[_cons]
Bootstrap statistics Number of obs = 8
Replications = 1000
Variable | Reps Observed Bias Std. Err. [95% Conf Interval]
_____________ e e e e e e e e e e e e e e e e e e e e e e e e e e
_bs_1 | 1000 .0026512 -.0000737 .0003345 .0019947 .0033077 (N)
! .0019759 .0029066 (P)
i .00199 .0029246 (BC)
_bs_2 | 1000 13.97169 .6230986 3.637705 6.833275 21.11011 (N)
| 7.891942 21.74494 (P)
i 6.949539 19.73012 (BC)
cte N normal
P = percentile
BC = bias-corrected

The bootstrap distribution of coefficients on area is severely skewed (skewness = 4.12).
Whereas the bootstrap distribution of means (Figure 14.3) appeared approximately normal, and
produced bootstrap confidence intervals narrower than the theoretical confidence interval, in
this regression example bootstrapping obtains larger standard errors and wider confidence
intervals.

In a regression context, bs ordinarily performs what is called “data resampling,” or
resampling intact observations. An alternative procedure called “residual resampling”
(resampling only the residuals) requires a bit more programming work. Two additional
commands make such do-it-yourself bootstrapping easier: .
bsample Draws a sample with replacement from the existing data, replacing the data in

memory.
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bootstrap  Rums a user-defined program reps () times on bootstrap samples of size
size().
The Base Reference Manual gives examples of programs for use with bootstrap .

Monte Carlo Simulation

Monte Carlo simulations generate and analyze many samples of artificial data, allowing
researchers to investigate the long-run behavior.of their statistical techniques. The simulate
command makes designing a simulation straightforward so that it only requires a small amount
of additional programming. This section gives two examples.

To begin a simulation. we need to define a program that generates one sample of random
data, analyzes it, and stores the results of interest in memory. Below we see a file defining an
r-class program (one capable of storing = () results) named central . This program
randomly generates 100 values of variable x from a standard normal distribution. It next
generates 100 values of variable w from a “contaminated normal” distribution: N(0.1) with
probability .95, and N(0,10) with probability .05. Contaminated normal distributions have often
been used in robustness studies to simulate variables that contain occasional wild errors. For
both variables, cer.tra. obtains means and medians.

Creates a sampl=s corzzining n=100 cbservztions of variables x and w.
x~N(0,1) X is standard normal
w~N(0,1) with g=.85, w~N(2,10) wit= P=->3 w is contaminated normal
Calculates the m=an znd mediar of x and w.
Stored results: r (xmean) r(xmecian) r (wmean) r (wmedian)
program central, =-class

version E.0

drop _all

set obs 100

generate x = imvnora(uniform())

summarize x, d=tail

return scalar zmear = r (mean)

return scalar zmedizn = r(p50)

generate w = izvnorz(uniform())

replace w = 10*w if uniform() < .05

summarize w, d=tail

return scalar wmear = r (mean)

return sczlar wmedizn = x(p50)
end

L

Because we defined central as an r-class command, like summarize, it can store
its results in r () macros. central creates four such macros: r (xmezn) and
r (xmedian) forthemeanand medianofx: r (wvmean) and r (wmedian) forthe mean and

median of w.
Once central has been defined. whether through a do-file, ado-file, or typing

commands interactively, we can call this program with a simulate command. To create
a new dataset containing means and medians of x and w from 5,000 random samples, type
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simulate "central" xmean = r (xmean) xmedian = r(xmedian)
wmean = r(wmean) wmedian = r(wmedian), reps(5000)
command: central
statisticy: xmean = r (xmean)
xmedian = r(xmedian)
wmean = r (wmean)
wmedian = r (wmedian)

Thiscommand creates new variables xmean, xmedian, wmean, and wmedian,based onthe r ()
results from each iteration of central.

describe
Contains data
obs: 5,000 simulate: central
VErs: 4 1 Aug 2005 17:50
size: 100,000 (99.2% of memory free)
storage isplay value
variable name type fcrmat label variable label
xmean float £9.0g r (xmean)
xmedian float %£9.0g \\\\\\ r (xmedian)
wmea float %%.0g r (wmean)
wmedian float %£%.0g r (wmedian)
Sorted by:
summarize
Variable | Obs Mean Std. Dev Min Max
_____________ o i S ) 5 P e e e e
xmean | 5000 -.0015915 .0987788 -.4112561 .3699467
xmedian | 5000 -.0015566 .1246915 -.4647848 .4740642
wmean | 5000 -.0004433 .2470823 -1.11406 .8774976
wmedian | 5000 .0030762 .1303756 -.4584521 .5152998

The means of these means and medians, across 5,000 samples, are all close to 0 —
consistent with our expectation that the sample mean and median should both provide unbiased
estimates of the true population means (0) for x and w. Also as theory predicts, the mean
exhibits less sample-to-sample variation than the median when applied to a normally distributed
variable. The standard deviation of xmedian is .125, noticeably larger than the standard
deviation of xmean (.099). When applied to the outlier-prone variable w, on the other hand, the
opposite holds true: the standard deviation of wmedian is much lower than the standard
deviation of wmean (.130 vs. .247). This Monte Carlo experiment demonstrates that the median
remains a relatively stable measure of center despite wild outliers in the contaminated
distribution, whereas the mean breaks down and varies much more from sample to sample.
Figure 14.4 draws the comparison graphically, with box plots (and, incidentally, demonstrates
how to control the shapes of box plot outlier-marker symbols).
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graph box xmean xmedian wmean wmedian, yline (0) legend(col (4))
marker (1, msymbol (+)) marker (2, msymbol (Th))
marker (3, msymbol (Oh)) marker (4, msymbol (Sh))

Figure 14.4
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Our final example extends the inquiry to robust methods, bringing together several themes
from this book. Program regsim generates 100 observations of x (standard normal) and two
y variables. y! is a linear function of x plus standard normal errors. y2is also a linear function
of x, but adding contaminated normal errors. These variables permit us to explore how various
regression methods behave in the presence of normal and nonnormal errors. Four methods are
employed: ordinary least squares (regress ), robust regression ( rreq), quantile regression
( greg ), and quantile regression with bootstrapped standard errors ( bsqgreg, with 500
repetitions). Differences among these methods were discussed in Chapter 9. Program
regsim applies each method to the regression of y1 onx and then to the regression of -2 on
x. For this exercise, the program is defined by an ado-file, regsim.ado, saved in the
C:\ado\personal directory.
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program regsim, rclass

* Performs one iterati:zn of a Monte Carlo simulation comparing
* OLS regression (regress) with robust (rreg) and gquantile
* (greg and bsqreg) regression. Generates one n = 100 sample
* with x ~ N(0,1) ancé y variables defined by the models:
*
* MODEL 1: yl = 2x + el . el ~ N(0,1)
*
il MODEL 2: y2 = 2x + e2 e2 ~ N(0,1) with p = .95
% e2 ~ N(0,10) with p = .05
*
* Bootstrap standard =rrors for greg involve 500 repetitions.
*
version 8.0
if WNLINY == WHW
#delimit ;
global S_1 "bl zir selr blg selqg selgb
b2 b2r se2r zzqg se2q se2qb";
#delimit cr
exit
}
drop _all
set obs 100
generate x = invncr=(uniform())
generate e = invncr= (uniform())
generate yl = 2*x - =
reg yl x
return scalar = = _b|[x]
rreg yl x, iterate(25)
return scalar ZIR = _Db[x]
return scalar = _se[x]
qreg yl x
return scalar =Z1Q = _b[x]
return scalar SzZ1Q = _se[x]
bsqreg yl x, reps(500)
return scalar SZ1QB = _se[x]
replace e = 10 * e if uniform() < .05
generate y2 = 2*x + e
reg y2 x
return scalar B2 = _b[x]
rreg y2 x, iterate(25)
return scalar B2R = _b[x]
return scalar SE2R = _se[x]
qreg y2 x
return scalar BzQ = _b[x]
return scalar SZ2Q = se([x]
bsqreg y2 x, reps(520)
return scalar SZ2Q0B = _se[x]
end

The r-class program stores coefficient or standard error estimates from eight regression
analyses. These results have names such as

r (B1) coefficient from OLS regression of y/ on x
r (B1R) coefficient from robust regression of y/ on x
r (SE1R) standard error of robust coefficient from model 1

and so forth. All the robust and quantile regressions involve multiple iterations: typically 5 to
10 iterations for rreg, about 5 for qreg, and several thousand for bsgreg with its 500
bootstrap re-estimations of about 5 iterations each, per sample. Thus, a single execution of



&

Introduction to Programming 391

regsim demands more than two thousand regressions. The following command calls for five
repetitions.
. simulate "regsim" bl = r(Bl) blr = r (B1R) selr = r (SE1R)
blg = r(B1Q) selqgq = r(SE1lQ) selgb = r(SE1QB) b2 = r(B2)
b2r = r (B2R) se2r = r(SE2R) b2gq = r(B2Q) se2q = r (SE2Q)
se2gb = r(SE2QB), reps(5)

You might want to run a small simulation like this as a trial to get a sense of the time
required on your computer. For research purposes, however, we would need a much larger
experiment. Dataset regsim.dta contains results from an overnight experiment involving 5.000
repetitions of regsim-— more than 10 million regressions. The regression coefficients and
standard error estimates produced by this experiment are summarized below.

. describe

Contains data Zrom C:\data\rzzsim.dta
obs: Z, 000 15
vars: 12
size: 222,000 (99.0% - memory free)
szorage display value
variable name type formac: label variable l:zzel
bl float %9.0c¢ OLS b (nor-
blr float %9.0¢ Robust b (rn:rrm
selr float %9.0¢ Robust SE[z. (
blg float %9.0¢ Quantile b o
selqg float %9.0g Quantile £ ]
selgb float %9.0g Quantile b s
(normal o
b2 float %9.0g OLS b (conzzmi
b2r float %9.0g Robust b 1t ed errcrs)
se2r float %9.0g Robust SE[z. ( minated
errors)
b2qg float %9.0g Quantile ©
se2q float %9.0g Quantile 3z 'z:
errors)
se2qgb float %9.0g Quantile bootstrap SE{b]j
(contamirnzted errcrs)
Sorted by:
. summarize
Variable | Obs Mean Std. Dew. jiasls) Max
bl | 5000 2.000828 »10201.8 z
blr | 5000 2.00098¢ .1052277 2.231946
selr | 5000 .2041399 .0109429 13315421
blg | 5000 2.001135 .1309186 2.536621
selqg | 5000 .1262578 .0281738 s 2371508
_____________ 0 5 5 e e
selgb | 5000 1362755 .032673 +/05108 738 .29979
b2 | 5000 2.006001 .2484688 .90011:.4 3..250552
b2r | 5000 2.000399 + 1092553 1.6332<41 2.4£11423
se2r | 5000 .1081348 .0119274 .0743123 560973
b2g | 5000 2.000701 s 137101 L.4PLES2 2.336621
_____________ e
se2q | 5000 +1328431 .0299644 .0542C.5 .2594844
se2gb | 5000 .1436366 .0346679 .058%4719 3206417
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Figure 14.5 draws the distributions of coefficients as box plots. To make the plot more
readable we use the legend (symxsize (2) colgap(4)) options, which set the width
of symbols and the gaps between columns within the legend at less than their default size.
help legend_option and help relativesize supply further information about
these options. §

graph box bl bir blgq b2 b2r b2q, ytitle("Estimates of slope (b=2)")
yline (2)
legend (row (1) symxsize(2) colgap (4)
label (1 "OLS 1") label(2 "robust 1") label (3 "quantile 1")
label (4 "OLS 2") label (5 "robust 2") label (6 "quantile 2"))

Figure 14.5

pe (b=2)
2 25

Estimates of slo|

1.5

1

All three regression methods (OLS, robust, and quantile) produced mean coefficient
estimates for both models that are not significantly different from the true value, B=2. This
can be confirmed through ¢ tests such as

ttest b2r = 2

One-sample t test

Ho: mean(b2r) = 2
Ha: mean < 2 Ha: mean != 2 Ha: mean > 2
t = 0.2585 T = 0.2585 t = 0.2585
P <t = 0.6020 P g = 0.7960 P>t = 0.3980

SRPRA—— -

i o
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All the regression methods thus yield unbiased estimates of B, but they differ in their
sample-to-sample variation or efficiency. Applied to the normal-errors model 1, OLS proves
the most efficient, as the famous Gauss—Markov theorem would lead us to expect. The
observed standard deviation of OLS coefficients is -1016, compared with .1047 for robust
regression and .1282 for quantile regression. Relative efficiency, expressing the OLS
coefficient’s observed variance as a percentage of another estimator’s observed variance,
provides a standard way to compare such statistics:

quietly summarize bl
global Varbl = r (Var)
quietly summarize blr

. display 100* ($Varbl/r (Var))
93.992612

quietly summarize blg

display 100* ($Varbl/r (Var))

The calculations above use the r (Var) variance result from summarize . We first
obtain the variance of the OLS estimates 4/, and place this into global macro Varbi . Next
the variances of the robust estimates b/r, and the quantile estimates b/q, are obtained and each
compared with Varbl. This reveals that robust regression was about 94% as efficient as OLS
when applied to the normal-errors model — close to the large-sample efficiency of 95% that
this robust method theoretically should have (Hamilton 1992a). Quantile regression, in
contrast, achieves a relative efficiency of only 61% with the normal-errors model.

Similar calculations for the contaminated-errors model tell a different story. OLS was the
best (most efficient) estimator with normal errors, but with contaminated errors it becomes the
worst:

quietly summarize b2
global Varb2 = r(Var)
quietly summarize b2r
- display 100*($Varb2/r (Var))
517.208%7
quietly summarize b2q

display 100* ($Varb2/r (Var))
328.3%71

Outliers in the contaminated-errors model cause OLS coefficient estimates to vary wildly
from sample to sample, as can be seen in the fourth box plot of Figure 14.5. The variance of
these OLS coefficients is more than five times greater than the variance of the corresponding
robust coefficients, and more than three times greater than that of quantile coefficients. Put
another way, both robust and quantile regression prove to be much more stable than OLS in the
presence of outliers, yielding correspondingly lower standard errors and narrower confidence
intervals. Robust regression outperforms quantile regression with both the normal-errors and
the contaminated-errors models.
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Figure 14.6 illustrates the comparison between OLS and robust regression with ascatterplot
showing 5,000 pairs of regression coefficients. The OLS coefficients (vertical axis) vary much
more widely around the true value, 2.0, than rreg coefficients (horizontal axis) do.

graph twoway scatter b2 b2r, msymbol (p) ylabel(1(.5)3, grid)
yline(2) xlabel(1(.5)3, grid) xline(2)

Figure 14.6
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The experiment also provides information about the estimated standard errors under each
method and model. Mean estimated standard errors differ from the observed standard
deviations of coefficients. Discrepancies for the robust standard errors are small — less than
1%. For the theoretically-derived quantile standard errors the discrepancies appear a bit larger.
between 3 and 4%. The least satisfactory estimates appear to be the bootstrapped quantile
standard errors obtained by bsqreg . Means of the bootstrap standard errors exceed the
observed standard deviation of b/q and b2q by 4 to 5%. Bootstrapping apparently over-
estimated the sample-to-sample variation.

Monte Carlo simulation has become a key method in modern statistical research, and it
plays a growing role in statistical teaching as well. These examples demonstrate how readily
Stata supports Monte Carlo work.
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residual plot), 197, 202-203
added-variable plot, 198, 201-202
ado-file (automatic do), 233-235, 362,
373-375
alpha (Cronbach’s alpha reliability),
318-319
analysis of covariance (ANCOVA),
141-142, 153-154
analysis of variance (ANOV 4)
factorial, 142, 152-153. 156
interaction effects, 142, 152-154,
156-157
median, 253-255
N-way, 152-153
one-way, 142, 155
predicted values, 155-138, 167
regression model, 153-154, 249-256
repeated-measures, 142
robust, 249-256
standard errors, 155-157. 167
three-way, 142
two-way, 142, 152-153, 156157
anova, 142, 152-158, 167, 239
append, 13, 4244
ARCH model (autoregressive conditional
heteroskedasticity), 339
area plot, 86-87
args (arguments in program). 366368
areg (absorb variables in regression),
179-180
ARIMA model (autoregressive integrated
moving average), 339, 354-360
arithmetic operator, 26

artificial data, 14, 57-61, 241, 387-394
ASCII (text) file
read data, 13-14, 39-42
write data, 42
write results (log file), 2-3, 6-7
autocode (create ordinal variables), 31,
37-38
autocorrelation, 339, 350-352, 357-358.
369-373
aweight (analytical weights), 54
axis label in graph, 66
angle, 81-82
format, 13, 24-25, 76, 305-306
grid, 113-115
suppress, 118, 129, 173
axis scale in graph, 66, 112—118

B

_b coefficients (regression), 230. 269,
273-274, 285, 356

band regression, 217-219

bar chart, 94-99, 147, 150-151

Bartlett's test for equal variances, 149-150

batch-mode program, 61

beskew0 (transform to reduce skew), 129

beta weight (standardized regression
coefficient), 160, 164—165

Bonferroni multiple-comparison test
correlation matrix, 172—173
one-way ANOVA, 150-151

bootstrap, 246, 315-316, 382-387,
389-394

box plot, 66, 90-91, 118-1 19, 147,
150-151, 389, 392
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Box—Cox
regression, 215, 226-227
transformation, 129

Box-Pierce Q test (white noise), 341, 351,
354,357-358

browse (Data Browser), 13

bs (bootstrap), 382—-387

bsqreg (quantile regression with
bootstrap), 240, 246, 389-394

by prefix, 121, 133-134

C
¢ chart (quality control), 105
caption in graph, 109-110
case identification number, 38—39
categorical variable, 35-39, 183-185
censored-normal regression, 264
centering to reduce multicollinearity,
212214
chi-squared
deviance (logistic regression), 271,
275-278
equal variances in ANOVA, 149-150
independence in cross-tabulation, 55,
130-133, 281
likelihood-ratio in cross-tabulation,
130-131, 281
likelihood-ratio in logistic regression,
267-268, 270, 272-273, 281
probability plot, 105
quantile plot, 105
ci (confidence interval), 124, 255
cii (immediate confidence interval), 124
classification table (logistic regression),
264, 270-272
clear (remove data from memory), 14-15,
23, 362
cluster analysis, 318-320, 329-338
coefficient of variation, 123-124
collapse, 52-53
color
bar chart, 95-96
pie chart, 92
scatterplot symbols, 74
shaded regions, 86
combine data files, 14, 42-47

combine graphs. See graph combine
comments in programs. 364, 369-370.
373-374
communality (factor analysis). 326
component-plus-residual plot, 197-198.
202-203
compress, 13, 40, 60-61
conditional effect plot, 230-232,273-274,
284-287
confidence interval
binomial, 124
bootstrap, 383-384, 386
mean, 124
regression coefficients, 163
regression line, 66, 85, 110-112, 160
robust mean, 255
Poisson, 124
constraint (linear constraints), 262
Cookand Weisberg heteroskedasticity test,
197
Cook’s D, 158, 167, 197, 206-210
copy results, 4
correlation
hypothesis test, 160, 172—173
Kendall’s tau, 131, 174175
matrix, 18, 59, 160, 171-174
Pearson product-moment, 1, 18, 160.
171-173
regression coefficient estimates, 214
Spearman, 174
corrgram (autocorrelation). 339, 351.
357-358, 373
count-time data, 293-295
covariance
regression coefficient estimates, 167.
173,197,214
variables, 160, 173
COVRATIO, 167, 197, 206
Cox proportional hazard model, 290,
299-305
Cramer’s V, 131
Cronbach’s alpha, 318-319
cross-correlation, 353-354
cross-tabulation, 121, 130-136
ctset (define count-time data), 289,
293-294



cttost (convert count-time to survival-time
data), 289, 294-295

cubic spline curve. See graph twoway
mspline

cv (coefficient of variation), 123-124

D
Data Browser, 13
data dictionary, 41
Data Editor, 13, 15-16
data management, 12-63
database file, 41-42
date, 30, 266, 340-342
decode (numeric to string), 33-34
#delimit (end-of-line delimiter), 61. 116,
362
dendrogram, 319, 329, 331-337
describe (describe data), 3, 18
destring (string to numeric), 35
DFBETA, 158, 167, 197, 205-206,
208-210
DFITS, 167, 197, 206, 208-210
diagnostic statistics
ANOVA, 158, 167
logistic regression, 271, 274-278
regression, 167, 196-214
Dickey-Fuller test, 340, 355-356
difference (time series), 349-350
display (show value onscreen), 31-32. 39,
211, 269
display format, 13, 24-25. 359
do-file, 60-61, 115-116, 361-362,
367-373
Do-File Editor, 60, 361
dot plot, 67, 95, 99-100, 150-151
drawnorm (normal variable), 13, 59
drop
variable in memory, 22
data in memory, 14-15, 23, 40, 56
program in memory, 363, 373-375
dummy variable, 35-36, 176-185, 267
Durbin-Watson test, 158, 197, 350
dwstat (Durbin—Watson test), 197, 350

e
e-class, 381, 386
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edit (Data Editor). 13, 15-16

effect coding for ANOVA, 250-251

efficiency of estimator, 393

egen, 33, 331, 340, 343

eigenvalue, 318-319, 321, 326

empirical orthogonal function (EOF), 325

Encapsulated Postscript (.eps) graph. 6,
116

encode (string to numeric), 13, 33-34

epidemiological tables, 288

error-bar plot, 143, 155-157

estimates store (hypothesis testing),
272-273, 278-279, 282-283

event-count model, 288, 290, 310-313

Exploratory Data Analysis (EDA),
124-126

exponential filter (time series), 343

exponential growth model. 216, 232-235

exponential regression (survival analysis),
305-307

F
factor analysis, 318-328
factor rotation, 318-319, 322-325
factor score, 318-319, 323-325
factorial ANOVA, 142, 152-153, 156
FAQs (frequently asked questions), 8
filter, 343
Fisher’s exact test in cross-tabulation, 131
fixed and random effects, 162
foreach, 365
format
axis label in graph, 76, 305-306
input data, 4041
numerical display, 13, 24-25, 359
forvalues, 365
frequency table, 130-133. 138-139
frequency weights, 54-55, 66, 73-74, 120,
123, 138-140
function
date, 30
mathematical, 27-28
probability, 28-30
special, 31
string, 31
fweight (frequency weights), 54-55,

- 7374, 138-140
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G

generalized linear modeling (GLM). 264,
291, 313-317

generate, 13, 23-26, 37, 39

gladder, 128

Gompertz growth model, 234-238

Goodman and Kruskal’s gamma. 131

graph bar, 66-67, 94-99, 147

graph box, 66,90-91, 118-119, 147. 389,
392

graph combine, 117-119, 147, 150-151,
222,231-232

graph dot, 67, 95, 99-100, 150151

graph export, 116

graph hbar, 97-98

graph hbox, 91, 150-151

graph matrix, 66, 77, 173174

graph pie, 66, 92-94

graph twoway
all types, 84-85
overlays, 66, 85, 110-115, 344-345,

347-348

graph twoway area, 84, 85-86

graph twoway bar, 84

graph twoway connected, 5-6, 50-51, 66,
79-80, 83-84, 114-115, 157, 192-193

graph twoway dot, 85

graph twoway Ifit, 66, 74, 85, 110, 168,
181

graph twoway Ifitci, 85, 110-112,
170-171

graph twoway line, 66, 77-82, 112115,
117,221-222,242,244, 247, 344-345,
371

graph twoway lowess, 85, 88—89, 216,
219-221

graph twoway mband, 85, 216, 217-219

graph twoway mspline, 85. 182, 190,
218-219, 226, 287-288

graph twoway qfit, 85, 110, 190

graph twoway rarea, 84, 170

graph twoway rbar, 85

graph twoway rcap, 85, 89, 157

graph twoway scatter, 65-66, 72-77,
181-182, 277, 394

graph twoway spike, 84, 87-88, 347

graph use, 116

graph7, 65

gray scale, 86

greigen (graph eigenvalues), 318-319,
321-322

gsort (general sorting), 14

H

hat matrix, 167, 205-206, 210

hazard function, 290, 302, 307, 309

help, 7

help file, 7, 375-377

heteroskedasticity, 161, 197, 199-200,
223-224,239,256-258, 290, 315, 339

hettest (heteroskedasticity test), 197,
199-200

hierarchical linear models, 162

histogram, 65, 67-71, 385

Holt-Winters smoothing, 343

Huber/White robust standard errors, 160,
256-261

|
if qualifier, 13, 14, 19-23, 204-205, 209
if...else, 366
import data, 39-42
in qualifier, 14, 19-23, 166
incidence rate, 289-290, 293, 297,
309-310, 312
inequality, 21
infile (read ASCII data). 13-14, 4042
infix (read fixed-format data), 41-42
influence ’
logistic regression, 271, 274-278
regression (OLS), 167, 196-198, 201,
204-208
robust regression, 248
insert
graph into document, 6
table into document, 4
insheet (read spreadsheet data), 41-42
instrumental variables (2SLS), 161



|
I

interaction effect
ANOVA, 142, 152-157, 250-253
regression, 160. 180-185, 211-212,

259-261

interquartile range (IQR). 53, 91, 95, 103,
123-124, 126, 135

iteratively reweighted least squares (IRLS),
242

iweight (importance weights). 54

J
Jjackknife

residuals, 167

standard errors, 314-317
K

Kaplan-Meier survivor function, 289-290,
295-298

keep (keep variable or observation), 23,
173

Kendall’s tau, 131, 174-175

kernel density, 65, 70. 85

Kruskal-Wallis test. 142, 151152

kurtosis, 122-124, 126-127

L

L-estimator, 243

label data. 18

label define, 26

label values, 25-26

label variable. 16, 18

ladder of powers, 127-129

lag (time series), 349-350

lead (time series), 349-350

legend in graph, 78,81, 1 12,114-115, 157,
221, 344

letter-value display, 125-126

leverage, 158, 159, 167, 196, 198,
201-206, 210, 229, 246-248

leverage-vs.-squared-residuals plot, 198,
203-204

Ifit (fit of logistic model), 264

likelihood-ratio chi-squared.
squared

See chi-

————— s
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line in graph
pattern, 81-82, 84, 115
width, 221, 344, 371

line plot, 77-84

link function (GLM), 291, 313-317

list, 3-4, 14, 17, 19, 49, 54, 265

log, 2-3

log file, 2-3, 6-7

logarithm, 27, 127-129, 223-229

logical operator, 20

logistic growth model, 216,233-234

logistic regression, 262—287

logistic (logistic regression), 185, 262-264,
269-278

logit (logistic regression), 267-269

looping, 365-366

lowess smoothing, 88-89, 216, 219-222

Iroc (logistic ROC), 264

Irtest (likelihood-ratio test), 272-273,
278-279, 282-283

Isens (logistic sensitivity graph), 264

Istat (logistic classification table), 264,
270-272 :

Ivr2plot  (leverage-vs.-squared-residuals
plot), 198, 203-204

M

M-estimator, 243

macro, 235, 334, 363, 365, 367, 370, 387

Mann-Whitney U test, 142, 148-149, 152

margin in graph, 110, 113, 117-1 18,
192-193

marker label in graph, 66, 75-76, 202, 204

marker symbol in graph, 66, 73-175, 84,
100, 183, 277

marksample, 368-369

matched-pairs test, 143, 145-146

matrix algebra, 378-382

mean, 122-124, 126,135-137, 139-140,
143-158, 387-389

median, 90-91, 122-124, 126, 135-137,
387-389

median regression. See quantile regression

memory, 14, 61-63

merge, 14, 44-50

missing value, 13-16, 21, 37-38
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Monte Carlo, 126, 246, 387-394
moving average
filter, 340, 343-344
time series model, 354—360
multicollinearity, 210-214
multinomial logistic regression, 264, 278,
280-287
multiple-comparison test
correlation matrix, 172—173
one-way ANOVA, 150-151

N
negative exponential growth model, 233
nolabel option, 32-34
nonlinear regression, 21 6, 232-238
nonlinear smoothing, 340-341, 343-346
normal distribution
artificial data, 13, 59, 241
curve, 65
test for, 126—129
normal probability plot. See
quantile-normal plot
numerical variables, 16, 20,122

(0]

OBDC (Open Database Connectivity), 42
odds ratio. See logistic regression
observation number, 38-39
omitted-variables test, 197, 199
one-sample 7 test, 143-146

one-way ANOVA, 149-152

open file, 2

order (order variables in data), 19
ordered logistic regression, 278280
ordinal variable, 35-36

outfile (write ASCII data), 42
outlier, 126, 239-248, 344, 388-394
overlay twoway graphs, 110-115

P

p chart (quality control), 105-107

paired-difference test, 143, 145-146

panel data, 161, 191-195

partial autocorrelation, 339-340, 352

partial regression plot. See added-variable
plot

Pearson correlation, 3, 19, 160, 171-173

percentiles, 122-124, 136

periodogram, 340

Phillips—Perron test, 355

pie chart, 66, 92-94

placement (legend in graph), 114-115

poisgof (Poisson goodness of fit test),
310-311

Poissonregression, 290-291 ,309-313,317

polynomial regression, 188—19]

Portable Network Graphics (.png) graph, 6,
116

Postscript (.ps or .eps) graph, 6, 116

Prais—Winsten regression, 340, 359-360

predict (predicted values, residuals,
diagnostics)
anova, 155-158, 167
arima, 357

logistic, 264, 268-271, 284
regress, 159, 165-167, 190, 196-197,
205-210, 216, 233

principal components, 318-325

print graph, 6

print results, 4

probit regression, 262-263, 314

program, 362-363

promax rotation, 319, 322-325

pweight (probability or sampling weights),
54-56

pwceorr (pairwise Pearson correlation),
160, 172-173, 174-175

Q
qladder, 128-129
quality-control graphs, 67, 105-108
quantile
defined, 102
quantile plot, 102-103
quantile-normal plot, 67, 104
quantile—quantile plot, 104—105
regression, 239-256, 389-394
quartile, 91, 125-126
quietly, 175, 182, 188

R
r chart (quality control), 67, 106, 108



r-class, 381, 387, 390
Ramsey specification error test (RESET),
197
random data, 56-60, 241, 387-394
random number, 30, 56-59, 241
random sample, 14, 60
range (create data over range), 236
range plot, 89
range standardization, 334-335
rank, 32
rank-sum test, 142, 148-149, 152
real function, 35-36
regress (linear regression), 159-165, 239,
386, 389-394
regression
absorb categorical variable, 179-180
beta weight (standardized regression
coefficient), 160, 164—165
censored-normal, 264
confidence interval, 110-112, 163,
169-171
constant, 163
curvilinear, 189-191, 216, 223-232
diagnostics, 167, 196-214
dummy variable, 176-185
hypothesis test, 160, 175-176
instrumental variable, 161
line, 67, 110-112, 159-160, 168-171,
190, 242, 244,247
logistic, 262287
multinomial logistic, 264, 278,
280-287
multiple, 164—165
no constant, 163
nonlinear, 232-238
ordered logistic, 278-280
ordinary least squares (OLS), 159-165
Poisson, 290-291, 309-313, 317
polynomial, 188—191
predicted value, 165-167, 169
probit, 262-263, 314
residual, 165-167, 169, 205-207
robust, 239-256, 389-394
robust standard errors, 256-261
stepwise, 161, 186188
tobit, 188, 263

Index 407

transformed variables, 189-191. 216,
223-232
two-stage least squares (2SLS), 161
weighted least squares (WLS), 161,
245

relational operator, 20

relative risk ratio, 264, 281-284

rename, 16, 17

replace, 16, 25-26, 33

RESET (Ramsey test), 197

reshape, 49-52

residual, 159-160, 167, 200-208

residual-vs.-fitted (predicted values) plot,
160, 169, 188-191, 198, 200

retrieve graph, 116

robust
anova, 249-255
mean, 255
regression, 239-256
standard errors and variance, 256-261

ROC curve (receiver operating
characteristic), 264

rotation (factor analysis), 318-319,
322-325

rough, 345

rreg (robust regression), 239-256,
389-394

rvfplot (residual-vs.-fitted plot), 160,
188-191, 198, 200

rvpplot (residual-vs.-predictor plot

S

sample (draw random sample), 14, 60

sampling weights, 55-56

sandwich estimator of variance, 160,
256-261

SAS data files, 42

save (save dataset), 14, 16, 23

save graph, 6

saveold (save dataset in previous Stata
format), 14

scatterplot.  Also see graph twoway
scatter
axis labels, 66, 72
basic, 6667
marker labels, 67, 74-75, 202-204
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marker symbols, 72-73, 119. 182-183
matrix, 66, 77, 173-174
weighting, 66, 74-75, 207-208
with regression line. 66. 110-112,
159-160, 181-182 '
Scheffé multiple-comparison test. 150-151
score (factor scores), 318-319, 323-325
scree graph (eigenvalues), 318-319,
321-322
search, 8-9
seasonal difference (time series). 349-350
serrbar (standard-error bar plot), 143,
155-157
set memory, 14, 62-63
shading
color, 86
! intensity, 91
Shapiro-Francia test, 127
Shapiro-Wilk test, 127
shewart, 106
Sidék multiple-comparison test, 150,
172-173
sign test, 144—145
signed-rank test, 143 146
skewness, 122-124, 126-127
sktest (skewness—kurtosis test), 126-127,
383
slope dummy variable, 180
SMCL (Stata Markup and Control
Language). 376-377
smoothing, 340-341, 343-346
sort. 14. 19, 21-22, 166
Spearman correlation, 174-175
¢ spectral density, 340
i' spike plot, 84, 87-88, 347
! spreadsheet data, 41-42
SPSS data files, 42
standard deviation, 122—124, 126. 135

B

standard error
ANOVA, 155-157
bootstrap. See bootstrap
mean, 124
regression prediction, 167, 169—171
robust (Huber/White), 160, 256261

standardized regression coefficient, 160,
164-165

standardized variable, 32, 331

Stat/Transfer, 42

Stata Journal, 10-11

Statalist online forum, 10

stationary time series, 340, 355-356

stcox (Cox hazard model), 290, 299-303

stcurve (survival analysis graphs), 290,
307

stdes (describe survival-time data), 289,
292-293

stem-and-leaf display, 124-125

stepwise regression, 161, 186—-188

stphplet, 290

streg (survival-analysis regression), 290,
305-309

string to numeric, 32-35

string variable, 17, 4041

sts generate (generate survivor function),
290

sts graph (graph survivor function), 289,
296, 298

sts list (list survivor function), 290

sts test (test survivor function), 290, 298

stset (define survival-time data), 289,
291-292, 297

stsum (summarize survival-time data), 289,
293, 297

studentized residual, 167, 205, 207

subscript, 39-40, 343

summarize (summary statistics), 2, 17, 20,
31-32.90-91, 120-124, 383

sunflower plot, 74-75

survey sampling weights, 55-56, 161, 263

survival analysis, 288-309

svy: regress (survey data regression), 161

svyset (survey data definition), 56

sw (stepwise model fitting), 186—188

symmetry plot, 100, 102




syntax (programming), 368—369

T

t test
correlation coefficient, 160, 172—173
means, 143—-149
robust means, 255
unequal variance, 148

table, 121, 134-136, 152

tabstat, 120, 123-124

tabulate, 4, 15, 36-37, 56, 121, 130-133,
136

technical support, 9

test (hypothesis test for model), 160,
175-176, 312

text in graph, 109-110, 113, 222

time plot, 77-84, 343-348

time series, 339-360

tin (times in), 346-347, 350, 359

title in graph, 109-110, 112-113

tobit regression, 188, 263

transfer data, 42

transform variable, 126129, 189-190, 216

transpose data, 47—49

tree diagram, 319, 329, 331-337

tsset (define time series data), 340, 342,
346

tssmooth (time series smoothing),
340-341, 343-346

ttest, 143-149, 392

Tukey, John, 124

twithin (times within), 346347

two-sample test, 146—149

two-stage least squares (2SLS), 161

U

unequal variance in ¢ test, 143, 148—149

uniform (random number generator), 30,
56-58, 241

unit root, 355-356

use, 2-3, 15

\'

variance, 122-124, 135, 214

variance inflation factor, 197, 211-212
varimax rotation, 319, 322-325
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version, 364

W

web site, 9

Weibullregression (survival analysis), 305,
307-399

weighted least squares (WLS), 161, 245

weights, 55-57, 74-75,122—124, 138-140,
161

Welsch’s distance, 167, 206-210

which, 374

while, 365-366

white noise, 341, 351, 354. 357-358

Wilcoxon rank-sum test, 142. 148-149,
152

Wilcoxon signed-rank test. 143. 146

Windows metafile (.wmf or .emf) graph, 6,
116

wntest (Box—Pierce white noise O test),
341

word processor
insert Stata graph into, 6
insert Stata table into, 4

X

x axis in graph. See axis label in graph,
axis scale in graph

x-bar chart (quality control), 106—108

xcorr (cross-correlation), 353—354

xi (expanded interaction terms), 160,
183-185

Xpose (transpose data), 48—49

xtmixed (multilevel mixed-effect models),
162

xtreg (panel data regression), 161,
191-195

b ]
y axis in graph. See axis label in graph,
axis scale in graph

z

z score (standardized variable), 32, 331
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For students and practicing researchers alike, Statistics with Stata opens the door to full use of the popular Stata
program—a fast, flexible, and easy-to-use environment for data management and statistical analysis. Now integrating
Stata’s impressive new graphics, this comprehensive book presents hundreds of examples showing how you can apply
Stata to accomplish a wide variety of tasks. Like Stata itself, Statistics with Stata will make it easier for you to
move fluidly through the world of modern data analysis. Its contents include:

A A complete chapter on database management,
including sections on how to create, translate,
update, or restructure datasets.

A A detailed, example-based introduction to the
new graphical capabilities of Stata. Topics
range from simple histograms and time plots to
regression diagnostics and quality control
charts. New sections describe methods to
combine or enhance graphs for publication.

A Basic statistical tools, including tables, para-
metric tests, chi-square and other nonparamet-
ric tests, ¢ tests, ANOVA/ANCOVA, correlation,
linear regression, and multiple regression.

A Advanced methods, including nonlinear,

robust, and quantile regression; logit, multino-
mial logit, and other models for categorical
dependent variables; survival and event-count
analysis; generalized linear modeling (GLM),
factor analysis, and cluster analysis—all
demonstrated through practical, easy-to-follow
examples with an emphasis on interpretation.

Guidelines for writing your own programs in
Stata—user-written programs allow creation
of powerful new tools for database management
and statistical analysis and support computa-
tion-intensive methods, such as bootstrapping
and Monte Carlo simulation.
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