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1.
2.

. boxcox y xl x2 x3, model(Ihs)

Finds maximum-likelihood estimates of the parameter A (lambda) for a Box-Cox 
transformation ofy, assuming that/*’ is a linear function of*/, x2, andx3 plus Gaussian 
constant-variance errors. The model (Ihs) option restricts transformation to the left­
hand-side variable Other options could transform right-hand-side (x) variables by the 
same or different parameters, and control further details of the model. Type help 
boxcox for the syntax and a complete list of options. The Base Reference Manual gives 
technical details.

Basic regression and correlation methods assume linear relationships. Linear models provide 
reasonable and simple approximations for many real phenomena, over a limited range of values. 
But analysts also encounter phenomena where linear approximations are too simple; these call 
for nonlinear alternatives. This chapter describes three broad approaches to modeling nonlinear 
or curvilinear relationships:

Nonparametric methods, including band regression and lowess smoothing.
Linear regression with transformed variables (“curvilinear regression”), including Box-Cox 
methods.
Nonlinear regression.

Nonparametric regression serves as an exploratory' tool because it can summarize data 
patterns visually without requiring the analyst to specify a particular model in advance. 
Transformed variables extend the usefulness of linear parametric methods, such as OLS 
regression (regre s s), to encompass curvilinear relationships as well. Nonlinear regression, 
on the other hand, requires a different class of methods that can estimate parameters of 
intrinsically nonlinear models.

The following menu groups cover many of the operations discussed in this chapter. The 
final topic, nonlinear regression, requires a command-based approach.
Graphics - Two way

Statistics - Nonparametric analysis - Lowess smoothing

Data - Create or change variables - Create new variable

Statistics - Linear regression and related
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to fit a 2-parameter exponential growth model,

.1.

transformed, the predicted values generated

1

■t i

. graph twoway mband y x, bands(10) || scatter y x
Produces a v versusx scatterplot with line segments connecting the cross-medians (median 
x, median j’ points) within 10 equal-width vertical bands. This is one form of “band 
regression. Typing mspline in place of mband in this command would result in the 
cross-medians being connected by a smooth cubic spline curve instead of by line segments.

. graph twoway lowess y x, bwidth(.4) || scatter y x
Draws a lowess-smoothed curve with a scatterplot ofy versus x. Lowess calculations use 
a bandwidth of .4 (40% of the data). In order to calculate and keep the smoothed values as 
a new variable, use the related command lowess .

. lowess y x, bwidth(.3) gen(newvar)

Draws a lowess-smoothed curve on a scatterplot ofy versus x, using a bandwidth of 3 
(30% of the data). Predicted values for this curve are saved as a variable named newvar 
The lowess command offers more options than graph twoway lowess, including 
fitting methods and the ability to save predicted values. See help lowess for details^ 

nl exp2 y x

Uses iterative nonlinear least squares
predicted y = bx b2 x

The term exP2 refers to a separate program that specifies the model itself. You can write 
a program to define your own model, or use one of the common models (including 
exponential, logistic, and Gompertz) supplied with Stata. After nl, use predict to 
generate predicted values or residuals.

. nl log4 y x, init(B0=5, Bl=25, B2=.lz B3=50)
Fits a 4-parameter logistic growth model (log4 ) of the form

predicted v = b 0 + b, /(I + exp(-Z>, (,v - b 5)))
Sets initial parameter values for the iterative estimation process at b- = S b =25 b 
and/>3 = 50. ’ i ’ 2

. regress Iny xl sqrtx2 invx3
Performs cun ilinear regression using the xariables Iny, xl, sqrtx2, and invx3. These 
variables were previously generated by nonlinear transformations of the raw variables v, 
x2, and x3 through commands such as the following:
. generate Iny = In(y)
. generate sqrtx2 = sqrt(x2)
- generate invx3 = l/x3

When, as in this example, they variable was transformed, the predicted values generated 
by predict yhat, or residuals generated by predict e, resid, will be also in 
transformed units. For graphing or other purposes, we might want to return predicted 
values or residuals to raw-data units, using inverse transformations such as

replace yhat = exp(yhat)
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Band Regression

missiles, deployed by the U.S. and Soviet Union during their arms race, 1958 to 1990:

variable n ame variable label

soviet

type

float

Sorted by: country ye a r

should land. Year by year, scientists

miles") legend(off)

Figure 8.1CXI

I
I o

1960 1990

I I
I I

display 
format

value 
label

Missile
US or Soviet missile?
Year of first deployment 
ICBM or submarine-launched? 
Range in nautical miles 
Circular Error Probable (miles)

missile 
country 
year 
type 
range 
CEP

%15s 
%8.0g 
%8.0g 
%8.0g
*8.0g 
«9.0g

storage 
type

1970 1980
Year of first deployment

strlo 
byte

byte

Missiles (MacKenzie 1990)
16 Jul 2005 14:57
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Variables in missile.dta include an accuracy measure called the “Circular Error Probable” 
(CEP). CEP represents the radius of a bulls eye within which 50% of the missile’s warheads 

on both sides worked to improve accuracy (Figure 8.1).
. graph twoway mband CEP year, bands(8) 

scatter CEP year
> ytitle("Circular Error Probable,

Nonparametric regression methods generally do not yield an explicit regression equation. They 
are primarily graphic tools for displaying the relationship, possibly nonlinear, between^ and 
x. Stata can draw a simple kind of nonparametric regression, band regression, onto any 
scatterplot or scatterplot matrix. For illustration, consider these sobering Cold War data 
(missile.dta) from MacKenzie (1990). The observations are 48 types of long-range nuclear

(99.9% of memory free)

Contains data from C:\data\missile.dta 
obs: 48

vars: 6
size: 1,392
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h:

miles")

Figure 8.2U.S. U.S.S.R.
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Figure 8.1 shows CEP declining (accuracy increasing) over time. The option bands (8) 
instructs graph twoway mband to divide the scatterplot into 8 equal-width vertical bands 
an raw me segments connecting the points (median x, mediany) within each band. This 
curve traces how the median of CEP changes with year.

Nonparametric regression does riot require theanalyst to specifya relationship’s functional 
form in advance. Instead, it allows us to explore the data with an “open mind.” This process 
often uncovers interesting results, such as when we view trends in U.S. and Soviet missile 
accuracy separately (Figure 8.2). The by (country) option in the following command 
produces separate plots for each country, each with overlaid band-regression curve and 

) option are suboptions controlling the legend and note.
year, bands(8) 

year

. me two curves in figure 8.2 differ substantially. U.S. missiles became much
more accurate in the 1960s, permitting a shift to smaller warheads. Three or more small 
warheads would fit on the same size missile that formerly carried one large warhead The 
accur^y of Sowet missiles improved more slowly, apparently stalling during the late 1960s to 
ear y 70s, and remained a decade or so behind their American counterparts. To make up for 
t is accuracy disadvantage, Soviet strategy emphasized larger rockets carrying high-yield 
warheads. Nonparametric regression can assist with a qualitative description of this sort or 
serve as a preliminary to fitting parametric models such as those described later.

We can add band regression curves to any scatterplot by overlaying an mband (or 
msplxne ) plot. Band regression’s simplicity makes it a convenient exploratory tool, but it 
possesses one notable disadvantage — the bands have the same width across the range ofx 
values, although some of these bands contain few or no observations. With normally 
distributed variables, for. example, data density decreases toward the extremes. Consequently,

scatterplot. Within the by (
• graph twoway mband CEP 

scatter CEP 
, ytitie("Circular Error Probable, 

by(country, legend(off) note(""))
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Lowess Smoothing

1
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Figure 8.34 *CXI
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A graph very similar to Figure 8.2 would result if we had typed instead

lowess CEP year if country == 0, bwidth(.4)
Like Figure 8.2, Figuie 8.3 (next page) shows U.S. missile accuracy improving rapidly 

during the 1960s and progressing at a more gradual rate in the 1970s and 1980s. Lowess- 
smoothed values of CEP are generated here with the name IsCEP. The bwidth (. 4) option 
specifies the lowess bandwidth: the fraction of the sample used in smoothing each point. The 
default is bwidth (. 8). The closer bandwidth is to 1, the greater the degree of smoothing.

Lowess predicted (smoothed) y values for n observations result from n weighted 
regressions. Let k represent the-half-bandwidth, truncated to an integer. For eachy/, a

the left and right endpoints of the band regression curve (which tend to dominate its 
appearance) often reflect just a few data points. The next section describes a more 
sophisticated, computation-intensive approach.

The lowess and graph twoway lowess commands accomplish a form of 
nonparametric regression called lowess smoothing (for locally weighted scatterplot smoothing). 
In general the lowess command is more specialized and more powerful, with options that 
control details of the fitting process, graph twoway lowess has advantages of 
simplicity, and follows the familiar syntax of the graph twoway family. The following

- "ar for U.S. missiles only
(country == 0).
. graph twoway lowess CEP year if country 

I I
I I
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where

The default is running-line least squares

■ I

help cline__options .

logit 
adjust

I rlopts ()

Because it requires n weighted regressions, lowess smoothing proceeds slowly with large

noweight 
bwidth( )

For running-mean smoothing.
smoothing.
Unweighted smoothing. The defaultis Cleveland’s tricube weighting function. 
Specifies the bandwidth. Centered subsets of approximately bwidth x n 
observations are used for smoothing, except towards the endpoints where 
smaller, uncentered bands are used. The default is bwidth (. 8).
Transforms smoothed values to logits.
Adjusts the mean of smoothed values to equal the mean of the original y 
variable; like logit, adjust is useful with dichotomous y.

Creates newvar containing smoothed values ofy.
Suppresses displaying the graph.

Provides a way to add other plots to the generated graph; see help 
plot_option.

Affects the rendition of the reference line; see

smoothed value y/ is obtained by weighted regression involving only those observations within 
the interval from i = max(l, i - k) through i = min(z + k, n). The jth observation within this 
internal receives weight according to a tricube function:

^ = (l-|Wy|3)3

gen (newvar) 
nograph 

plot( )

samples.
In addition to smoothing scatterplots, lowess can be used for exploratory time series 

smoothing. The file ice.dta contains results from the Greenland Ice Sheet 2 (GISP2) project 
described in Mayewski, Holdsworth, and colleagues (1993) and Mayewski, Meeker, and 
colleagues (1993). Researchers extracted and chemically analyzed an ice core representing 
more than 100,000 years of climate history, ice.dta includes a small fraction of this 
information: measured non-sea salt sulfate concentration and an index of “Polar Circulation 
Intensity” since AD 1500.

uj = (xi-xj)/
A stands for the distance between x, and its furthest neighbor within the interval. Weights 
equal 1 forx,=xy, but fall off to zero at the interval’s boundaries. See Chambers et al. (1983) 
or Cleveland (1993) for more discussion and examples of lowess methods.

lowess options include the following.
mean
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1
(99.9% of memory free)

variable label

Sorted by: year

Figure 8.4

1800
— lowess smoothed

after being injected into the

storage 
type

display 
'format

value 
label

year 
sulfate
PCI

o o CM

Contains data from C:\data\ice.dta 
obs: 271

vars: 3
size: 5,962

Greenland ice 
14 Jul 2005 1

(Mayewski 1995)
4 : 57

raw data I

S-o Q.IO

o
roh
c °
o
c o

O 
W

Year
S04 ion conce
Polar Circula

tration, ppb 
ion Intensity

int %ty 
double %10.0g 
double %6.0g

Non-sea salt sulfate (SO 4 ) reached the Greenland ice after being injected into the 
atmosphere, chiefly by volcanoes or the burning of fossil fuels such as coal and oil. Both the 
smoothed and raw curves in Figure 8.4 convey information. The smoothed curve shows 
oscillations around a slightly rising mean from 1500 through the early 1800s. After 1900, fossil 
fuels drive the smoothed curve upward, with temporary setbacks after 1929 (the Great 
Depression) and the early 1970s {combined effects of the U.S. Clean Air Act, 1970; the Arab 
oil embargo, 1973; and subsequent oil price hikes). Most of the sharp peaks of the raw data

variable name

j J J
o -I____

1500 1600 1700 1800 1900 2000
Year

To retain more detail from this 271-point time series, we smooth with a relatively narrow 
bandwidth, only 5% of the sample. Figure 8.4 graphs the results. The smoothed curve has been I 
drawn with “thick” width, to visually distinguish it from the raw data. (Type help 
linewidthstyle for other choices of line width.)
. graph twoway lowess sulfate year, bwidth(.OS) clwidth(thick)

|| line sulfate year, cipattern(solid)
I I r ytitle("SO4 ion concentration, PPb")
legend(label(1 "lowess smoothed") label (2 "raw data"))
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rows(2)

Figure 8.5S Oil Embargo 1973
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have been identified with known volcanic eruptions such as Iceland’s Hekla (1970) or Alaska’s 
Katmai (1912).

After smoothing time series data, it is often useful to study the smooth and rough (residual) 
series separately. The following commands create two new variables: lowess-smoothed values 
of sulfate (smooth) and the residuals or rough values (rough) calculated by subtracting the 
smoothed values from the raw data.
. lowess sulfate year, bwidth(.OS) gen(smooth)
label variable smooth "SO4 ion concentration (smoothed)’’

. gen rough = sulfate - smooth

. label variable rough "SO4 ion concentration (rough)"
Figure 8.5 compares the smooth and rough time series in a pair of graphs annotated using 

the text ( ) option, then combined.
. graph twoway line smooth year, ylabel(0(50)150) xtitle(’”') 

ytitle ("Smoothed”) text(20 1540 ’’Renaissance") 
text (20 1900 "Industrialization”) 
text(90 1860 "Great Depression 1929")
text (150 1935 "Oil Embargo 1973") saving(fig08_05a, replace)

. graph twoway line rough year, ylabel(0(50)150) xtitle<"")
ytitle("Rough") text(75 1630 "Awu 1640", orientation(vertical)) 
text(120 1770 "Laki 1783", orientation(vertical))
text(90 1805 "Tambora 1815", orientation(vertical))
text(65 1902 "Katmai 1912", orientation(vertical)) 
text(80 1960 "Hekla 1970", orientation(vertical)) 
yline(0) saving(fig08_05b, replace)

. graph combine fig08_05a . gph fig08_05b. gph,

rJ;- ’■
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Regression with Transformed Variables — 1

16 Jul 2005
(99.9% of memory free)

variable label

Sorted by: year

year 
tornado 
lives 
avlost

vars :
size :

storage 
type

4
994

%8.0g
%8.0g
%8.0g
%9.0g

display 
format

value 
label

Year
Number of tornados
Number of lives lost
Average lives lost/tornado

Contains data from C:\data\tornado.dta 
obs: 71

int 
int 
int 
float

I
I

The number of fatalities decreased over this period, while the number of recognized 
tornados increased, because of improvements in warnings and our ability to detect more 
tornados, even those that do little damage. Consequently, the average lives lost per tornado 
{avlost) declined with time, but a linear regression (Figure 8.6, following page) does not well 
describe this trend. The scatter descends more steeply than the regression line at first, then 
levels off in the mid-1950s. The regression line actually predicts negative numbers of deaths 
in later years. Furthermore, average tornado deaths exhibit more variation in earlv years than 
later — evidence of heteroskedasticity.

U.S. tornados 1916-1986
(Council on Env. Quality 1988) 

14:57

By subjecting one or more variables to nonlinear transfonnation, and then including the 
transformed variable(s) in a linear regression, we implicitly fit a curvilinear model to the 
underlying data. Chapters 6 and 7 gave one example of this approach, polynomial regression, 
which incorporates second (and perhaps higher) powers of at least one x variable among the 
predictors. Logarithms also are used routinely in many fields. Other common transformations 
include those of the ladder of powers and Box-Cox transfonnations, introduced in Chapter 4.

Dataset tornado.dta provides a simple illustration involving U.S. tornados from 1916 to 
1986 (from the Council on Environmental Quality, 1988).

variable name
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Figure 8.6
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1930 19501920 1940 1960 1970 1980 1990

ss df MS

159.77606 70 2.28251515

Coef. Std. Err P>|t |t [95% Conf. Interval]

fitted values)

120.56 .06year"

. predict yhat2 
(option xb assumed;

- .0623418
120.5645

115.895325
43.8807356

1
69

115.895325
.63595269

- . 0715545
102.5894

. label variable yhat2 "In(avlost) =

. label variable loglost "In(avlost)”

- .053129
138 . 5395

.004618
9.01C312

-13.50
13.38

0.000
0.000

71 
1=2.24 
•:. logo

0.7214 
."9747

• graph twoway scatter avlost 
I I 
I I 
xtitle(

year
Ifit avlost year, cipattern(solid)

, ytitle("Average number of lives lost") xlabel(1920(10)1990)
I”") legend(off) ylabel (0(1)7) yline(0)

The relationship becomes linear, and heteroskedasticity vanishes if we work instead with 
logarithms of the average number of lives lost (Figure 8.7):
. generate loglost = In(avlost)

. label variable loglost "In(avlost)"

. regress loglost year

Source |

Total |

Model | 
Residual | 
--------------+

w _oin -</) (D

*o
<D n Eco - □ c
0) O)CM - <u
0)

Number of obs = 
F( 1, 69) =
Prob > F 
R-squared 
Adj R-squared = 
Root MSE

loglost | ------- + 
year | 

_cons |
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Figure 8.7CM
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• graph twoway scatter loglost
I I
I I
xlabel (1920 (10) 1990) xtitle ('”' 
yline (0)

* e

year
mspline yhat2 year, cipattern(solid) bands(50)
, ytitle("Natural log(average lives lost)")

) legend(off) ylabel(-4 (1) 2)

The regression model is approximately
predicted \n(avlosr) = 120.56 - .06year

Because we regressed logarithms of lives lost on year, the model’s predicted values are also 
measured in logarithmic units. Return these predicted values to their natural units (lives lost) 
by inverse transformation, in this case exponentiating (e to power) yhat2:
. replace yhat2 = exp(yhat2) 
(71 real changes r.ade;

Graphing these inverse-transformed predicted values reveals the curvilinear regression model, 
which we obtained by linear regression with a transformed y variable (Figure"8.8). Contrast 
Figures 8.7 and 8.8 with Figure 8.6 to see how transformation made the analvsis both simpler 
and more realistic.



226 Statistics with Stata

Figure 8.8
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year, model(Ihs) nolog

Log likelihood = -7.7185533

Coe f . S-_d. Err. P> I z | [95% Conf. Interval]z
/theta -.0560959 :f46726 -0.87 0.386 - .1828519 . 07066

Estimates of scale-variant parameters
Coef .

Notrans

/sigma | .8301177
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-.0661891
127.9713
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92.28
3.0 00

xodiuoer cz ohs
LR chi2(1) 
Prob > chi2

year
mspline yhat2 year, cipattern(solid) bands(50)

1 ytitle("Average number of lives lost") xlabel(1920(10)1990) 
"■’‘(""J legend(off) ylabel (0 (1) 7) yline(0)

!

i

I
year |
cons |

• graph twoway scatter avlost
I I
I I
xtitle (""

The boxcox command employs maximum-likelihood methods to fit curvilinear models 
involving Box-Cox transformations (introduced in Chapter 4). Fitting a model with Box-Cox 
transformation of the dependent variable ( model (Ihs) specifies left-hand side) to the 
tornado data, we obtain results quite similar to the model of Figures 8.7 and 8.8. The nolog 
option in the following command does not affect the model, but suppresses display of log 
likelihood after each iteration of the fitting process.
. boxcox avlost

avlost |

w o
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(D

-
Q

-Q
E
= c -
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.056 )

Regression with Transformed Variables — 2

i

1985ca .

variable label

___

transformation. It 
predictor. To do that, 
in the next section.

Test
HO :

0 
1

Restricted 
log likelihood P-Value

Prob > chi2

0.000
0.386
0.000

storage 
type
str8 
float 
byte 
byte 
byte 
int 
byte 
int 
int 
int 
float 
byte

value 
label

theta = -1 
theta = 
theta =

Data on 109 nations, 
16 Jul 2005 14:57

country 
pop 
birth 
death 
chldmort 
infmort 
life 
food 
energy 
gnpcap 
gnpgro 
urban

-84.92S"rl 
-8.09416“= 
-101.50385

d i s p 1 a y 
ft mat
*?s 
*r.0g 
? = . 0g
* 5 . 0g 
*= . 0g 
*= .0g
* 8 . 0g
* = . 0g 
%=. 0g 
%8.0g 
%3.0g 
% 8.0g

LR statistic
chi 2

154.42
0.75

187.57

variable name

'-ont-sxns data from C: \data\nations . dta 
obs: 109

vars: 15
size: 4,033

alvlost( ~ 056 } = (alvlosf056 - I)/-.056
Box-Cox transformation by a parameter close to zero, such as -.056, produces results similar 
to the natural-logarithm transformation we applied earlier to this variable “by hand ” It is 
therefore not surprising that the boxcox regression model

predicted alvlosf - 056 ’ = 127.97 - .07year
resembles the earlier model (predicted \n(avlost) = 120.56 - Myear) drawn in Figures 8.7 and 
8.8. The boxcox procedure assumes normal, independent, and identically distributed errors 
It does not select transformations with the aim of normalizing residuals, however.

boxcox can fit several types of models, including multiple regressions in which some or 
all of the right-hand-side variables are transformed by a parameter different from they-variable 

It cannot apply different transformations to each separate right-hand-side 
we return to a “by hand” cun ilinear-regression approach, as illustrated

(99.9% of memcry free)

Country
1985 population in millions 
Crude birth rate/1000 people 
Crude death race/1000 people 
Child (1-4 yr) mortality 1985 
Infant (<1 yr) mortality 1985 
Life expectancy at birth 1985 
Per capita daily calories 1985 
Per cap energy consumed, kg oil 
Per capita GNP 1985
Annual GNP growth % 65-85 
% population urban 1985

Fora multiple-regression example, we will use data on living conditions in 109 countries found 
in dataset nations.dta (from World Bank 1987; World Resources Institute 1993).

The boxcox output shows theta = -.056 as the optimal Box-Cox parameter for 
transforming avlost, in order to linearize its relationship withyear. Therefore, the left-hand- 
side transformation is
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• graph matrix gnpcap chldmort birth, half

Figure 8.9
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1985

byte
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I

%8 . Cc 
%8.Cg 
%8.0g

aJ^n°n^eaT,t jS T"be 56611 ?lear'y 'n the scatterPlot matrix of Figure 8.9. The skewed gnpcap

fn.Perimen'inrW,it,h,laddeir"°f‘P?WerS transforrnations reveals that the log of gnpcap and 
--------- i more symmetrical, with fewer outliers or 
variables. More importantly, these transformations 
ipare the raw-data scatterplots in Figure 8.9 with their

the square root of chldmort have distributions 
potential leverage points, than the raw 
largely eliminate the nonlinearities: cornj 
transformed-variables counterpans in Figure 8.10, on the following page,

Relationships among birth rate, per capita gross national product (GNP), and child mortality 
T" f 11 n O T* O C* O Ta O /A ZA •'X 1 *■! w • « — 4.1— — — _ _ « a 1 • • • —

and chldmort distributions also present potential leverage and influence problems.
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Figure 8.10
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We can now apply linear regression using the transformed variables:
regress birth loggnp srmort

Source | SS df MS

20076.1468 108 185.890248

birth | Coef. Std. Err. t P> 111 [95% Conf. Interval]

-2.353738
5.577359
26.19488

15837.9603
4238.18646

1.686255
.533567

6.362687

2
106

7918.98016
39.9828911

0.166
0.000
0.000

-5.696903
4.51951

13.58024

.9894259 
6.635207 
38.80953

109 
198.06 
0.0000 
0.7889 
0.7849 
6.3232

w

-1.40
10.45
4 .12

17

• M /
•

loggnp |
srmort I
_cons I

i

. generate loggnp = loglO(gnpcap)
label variable loggnp "Log-10 of per cap GNP"

. generate srmort = sqrt(chldmort)

label variable srmort "Square root child mortality" 
. graph matrix loggnp srmort birth, half

• X' >..
.. ••/A.

Model | 
Residual | 
------------ +

Total |

Log-10 
of per 

cap GNP

Square 
root 
child 

mortality

o
2

■

Crude 
birth 

rate/1000 
people

Unlike the raw-data regression (not shown), this transformed-variables version finds that per 
capita gross national product does not significantly affect birth rate once we control for child 
mortality. The transformed-variables regression fits slightly better: R2& = .7849 instead of 
.6715. (We can compare R 2a across models here only because both have the same 
untransformed y variable.) Leverage plots would confirm that transformations have much 
reduced the curvilinearity of the raw-data regression.

Number of obs = 
F( 2, 106) =
Prob > F 
R-squared = 
Adj R-squared = 
Root MSE
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Conditional Effect Plots

Figure 8.11
co

5000 15000 2000010000
Per capita GNP 1985

Similarly, Figure 8.12 depicts predicted birth rates as a function Qfsrmort, with loggnp held 
at its mean (3.09):
. generate yhat2 = _b[_cons] + _b[loggnp}*3.09 + _b[snnort]★srmort
. label variable yhat2 "birth = f(chldmort | loggnp = 3.09)"
. graph twoway line yhat2 chldmort, sort xlabel(,grid) xline(0 27)

i!

CM 
II 

■E 
O

& o
C CM 
CTCO

II

€ z t-co

Conditional effect plots trace the predicted values ofy as a function of onex variable, with 
other .v variables held constant at arbitrary values such as their means, medians, quartiles, or 
extremes. Such plots help with interpreting results from transformed-variables regression.

Continuing with the previous example, we can calculate predicted birth rates as a function 
°f loggnp* with srmort held at its mean (2.49):
generate yhatl = _b[_cons] + _b[loggnp]*loggnp + _b[srmort]*2.49 

. label variable yhatl "birth = f(gnpcap | srmort = 2.49)
The _b[vY7/7z<7/ne] terms refer to the regression coefficient on varname from this session’s most 
recent regression. _b[_cons] is they-intercept or constant.

Fora conditional effect plot, graphy/ztzr/ (after inverse transformation if needed, although 
it is not needed here) against the untransformed x variable (Figure 8.11). Because conditional 
effect plots do not show the scatter of data, it can be useful to add reference lines such as the 
.v variable’s 10th and 90th percentiles, as shown in Figure 8.11.
. graph twoway line yhatl gnpcap, sort xlabel(,grid) xline(230 10890)

3
0
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Figure 8.12
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particularly over the middle 80% of the x values (between 10th and 90th percentile lines), 
provide a visual comparison of effect magnitude.
. graph combine fig08_ll.gph fig08_12.gph, ycommon cols(2) scale(1.25)

5000 10000 15000 20000
Per capita GNP 1985

o
cm

0 0 10 20 30 40
Child (1-4 yr) mortality 1985

How can we compare the strength of differentx variables’ effects? Standardized regression 
coefficients (beta weights) are sometimes used for this purpose, but they imply a specialized 
definition of strength” and can easily be misleading. A more substantively meaningful 
comparison might come from looking at conditional effect plots drawn with identicaly scales. 
This can be accomplished easily by using graph combine, and specifying common jp-axis 
scales, as done in Figure 8.13. The vertical distances traveled by the predicted values curve.

8 I
o
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Nonlinear Regression — 1

(99.9% of memory free)

variable label

-
y4 float %9.0g

e
Sorted by: x

manufactured, with y variables defined as various nonlinear

(obs = 100)

Source SS df MS

693156.549 100 6931.56549

- ]

I

Iteration 0:
Iteration 1:
Iteration 2:
Iteration 3:

vars :
size :

residual SS = 
residual SS = 
residual SS = 
residual SS =

storage 
type

667018.255
26138.2933

5
2, 100

byte 
float 
float 
float

%9.0g
%9.0g
%9.0g
%9.0g

display 
format

27625.96
26547.42
26138.3

26138.29

2
98

333509.128
266.717278

value 
label

100
1250.42 
0.0000 
0.9623 
0.9615 

16.33148 
840.3864

Nonlinear model examples 
(artificial data)

16 Jul 2005 14:57

X

yi
y2
y3

Contains data from C:\data\nonlin.dta 
obs: 100

h h

r

k I
1

require a different class of fitting techniques. The i ' 
regression by iterative least squares. This section introduces it using 
examples, nonlin.dta:

The nonlin.dta data are i "  
^.C,2°nS °f X’ P1“sir^ndo^Gaussian errors. yl, for example, represents the exponential 

~ . Estimating these parameters from the data, nl obtains yl

Number of obs = 
F( 2, 98) =
Prob > F = 
R-squared = 
Adj R-squared = 
Root MSE 
Res .' dev. =

Model | 
Residual | ------- +

Total |

Variable transformations allow fitting some curvilinear relationships using the familiar 
techniques of intrinsically linear models. Intrinsically nonlinear models, on the other hand, 

> nl command performs nonlinear 
a dataset of simple

Combining several conditional effects plots into one image with common vertical scales, 
as done in Figure 8.13, allows quick visual comparison of the strength of different effects’ 
F igure 8.13 makes obvious how much stronger is the effect of child mortality on birth rates — 
as separate plots (Figures 8.11 and 8.12) did not.

Independent variable 
yl = 10 * 1.03Ax + e 
y2 = 10 * (1 - ,95Ax) + e 
y3 = 5 + 25/(1+exp (-.1*(x-50))) 

+ e 
y4 = 5 +
25*exp (-exp(-.1*(x-50))) +

growth process yl = 10 x 1.03 x. ]
= 11.20 x 1.03 x, which is reasonably close to the true model. 
. nl exp2 yl x

variable name
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yi Coef. t P> 111

Figure 8.14

o
ii

o

200 40 60 80 100x

I

exp2

I log4

log3

r

io

. predict yhatl
(option yhat assumed; fitted values)

11.20416
1.028838

0.000
0.000

o o
CXI

X

line yhatl x, sort 
, legend(off) ytitle("yl = 10

13.47971 
1.C31299

8.928602
1.026376

1.146682 
.0012404

9 . 77
829.41

co

2 §

o 
IO

0)

. graph twoway scatter yl 
I| line yhatl x, 
I I

bl f
b2 i

The predict command obtains predicted values and residuals for a nonlinear model 
estimated by nl . Figure 8.14 graphs predicted values from the previous example, showing 
the close fit (R2 = .96) between model and data.

3- parameter exponential: y = + b , b2 r
2- parameter exponential: y = b, b2 x

exp2a 2-parameter negative exponential: y = b^\ ~ b2 x)
4- parameter logistic; b0 starting level and (b0 + b,) asymptotic upper limit: 

y = ^o + Z>i/(l +exp(-Z?2(x -Z?3)))
3- parameter logistic; 0 starting level and b , asymptotic upper limit:
v = Z?, /(I +exp(-6,(x -b^))

Std. Err.

1.03Ax + e") xtitle("x")

2-param. exp.

The exp2 part of our nl exp2 yl x command specified a particular exponential 
growth function by calling a brief program named nlexp2.ado. Stata includes several such 
programs, defining the following functions:

exp3

growth curve, yl=bl*b2''x

[95% Conf. Interval]

(SE's, P values. Cl’s, and correlations are asymptotic approximations)
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gom4

gom3

Figure 8.15in
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4-parameter Gompertz; bQ starting level and (Z>0+ b,) asymptotic upper limit: 
y = b0 +b} exp(-exp(-/>2 (x -b3)))
3-parameter Gompertz; 0 starting level and b, asymptotic upper limit:
y = bx exp(-exp(-Z>2 (x -b.)))

nonlin.dta contains examples corresponding to exp2 (y’l), exp2a (r2), log4 and 
gom4 (y4) functions. Figure 8.15 shows curves fit by nl to y2, y3, and y4.

local exp "('e(wtype)’ 
tempvar Y 
quietly {

gen
reg

Users can write further nlfunction programs of their own. Here is the code for the 
nlexp2 . ado program defining a 2-parameter exponential growth model:

40 x

11

= log ('e (depvar) •) if e (sample) 
'2' 'exp' if e(sample)

Y on

2

}
global bl = exp(_b[_cons]) 
global b2 = exp(_b['2’]) 
exit

*! version 1.1.3 12junl998
program define nlexp2 

version 6 
if ••' i • "=="?•• {

global S_2 "2-param. 
global S_1 "bl b2"

exp. growth curve, $S_E_depv=bl*b2A'2

)
replace '1’ = $bl* ($b2)A'21 

end

co
ID 
CM
O 

<o™ 
>^in

0 20 40 60 80 100
X

0 20 40 60 80 10C
x

8 i
p •



7

Fitting Curves 235

Nonlinear Regression — 2

rock monuments and other deposits,

variable label

Sorted by:

I

display 
format

Lichen growth (Werner 1990)
14 Jul 2005 14:57

new predicted values 
b2 . In 

macro bl.” Similarly,the

value 
label

strl 
in t

; mm 
mm

: mm
mm

locale 
point 
date 
age 
rshort
pshort 
plong

storage 
type

float
float

Locality and feature 
Control point
Date
Age in years
P.hizocarpon short axis
Rhizocarpon long axis : 
P.minuscula short axis 
P.minuscula long axis i

approximate initial values of the parameters to be estimated, 
-1 —2 L2 . It then calculates an initial set of

This program finds some i
storing these as “global macros” named bl and b2 . I * ‘
predicted x alues. as a “local macro” named 1 , employing the initial parameter estirateTand

notation ' 1' means “the contents of local macro 1
Before attempting to write your own nonlinear function, examine nllog4.ado 

nlgom4 .ado , and others as examples, and consult the manual or help nl for 
explanations. Chapter 14 contains further discussion of macros and other aspects of Stata 
programming.

Lichens characteristically exhibit a period ofrelati vely fast early growth, gradually slowing, 
as suggested by the lowess-smoothed curve in Figure 8.16.

the model equation:
replace ' 1 ' = $bl ’*

variable nare

*31s 
*9s 
%8.0o 
VS.Og 
*9. Qz 
^9. Cg
%8.0g 
%8.0g

Our second example involves real data, and illustrates some steps that can help in research. 
Dataset lichen.dta concerns measurements of lichen growth observed on the Norwegian arctic 
island of Svalbard (from Werner 1990). These slow-growing symbionts are often used to date 

, so their growth rates interest scientists in several fields.

Contains data from C:\data\lichen.dta
obs: 11

vars: 8
s^ze: 572 (99.9* of memory free)

(Sb2)A '2 '

Subsequent iterations of nl will return to this line, calculating
(replacing the contents of macro 1 ) as they refine the parameter estimates bl and 
Stata programs, the notation $bl means “the contents of global
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Figure 8.1640

300 400

if age >= .

28
56
79
80

200 
Age in years

I'I?
f f I

s ? '■
3

1’.'
I ■

E 30 
E 

.w
TO 
O) 

-2 20s
Q-

3 
.§ 
S 10

Ht

I

newage I
------------- I

0 I
4 I
8 I

12 |

Lichenometncians seek to summarize and compare such patterns by drawing growth curves. 
Their growth curves might not employ an explicit mathematical model, but we can fit one here 
to illustrate the process of nonlinear regression. Gompertz curves are asymmetrical S-curves 
which have been widely used to model biological growth:

y = b, exp(- exp(- b 2 (.v - b 3)))
They might provide a reasonable model for lichen growth.

If we intend to graph a nonlinear model, the data should contain a good ranee of closelv 
spacedx values. Actual ages ofthe 11 lichen samples in lichen.dta range from 28 to 346 years. 
We can create 89 additional artificial observations, with “ages” from 0 to 352 in 4-vear 
increments, by the following commands:
. range newage 0 396 100 
obs was 11, now 100

. replace age = newage[_n-l1 ] 
(89 real changes made)

The first command created a new variable, newage, with 100 values ranging from 0 to 396 in 
4-year increments. In so doing, we also created 89 new artificial observations, with missing 
values on all variables except newage. The replace command substitutes the missing 
artificial-case age values with newage values, starting at 0. The first 15 observations in ouV 
data now look like this:

list rlong age newage in 1/15

I rlong
I

1. I
2. I
3. I
4 . I

J

age

1
5

12
14

8 fill
11

0
0 100
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5 . 13 80

6 .

25.5

summarize rlong age newage

Variable Obs Mean Std. Dev. Min Max

(obs = 11)

Source SS df MS
8) =

Total 3710.25 11 337.295455

3-parameter Gompertz function,

rlong Coef. Std. Err. t P>l t| [95% Conf. Interval]

(SE's. P values. CI ’ s.

A

I

I
I
I

nolog option suppresses displaying a log of iterations with the output. All three parameter 
estimates differ significantly from 1.

ii.
12 .
13 .
14 .
15 .

I 
I
I
I 
I 
I
I

131 
0 
4 
8 

12

34.36637 
.0217685 
88.79701

11
100
100

2.267186 
.0060806
5.632545

3
8

1211.05371 
9.63611018

11.31391
104.7042
116.046

15.16
3.58

15.76
0.000
0.007
0.000

1 
0 
0

29.13823 
. 0077465 
75.80834

34
352
396

Mede
F.esrdua

3633.16112 
77.0888815

80
89
89

346
346

14.86364
170.68

198

I
I
I
I
I
I
I
I
I

20

28
32

. 36

11
125.68 
0.0000 
0.9792 
0.9714 

3.104208 
52.63435

40
44
48
52
56

r .one
age 

newage

39.59451 
.035"?04 
101."657

8

10
34
34

8 .
9.

10.

guess or starting value of the parameter b,. Estimation of this model is accomplished by 
nl gom3 rlong age, init(Bl=34) nolog

Number of obs = 
F( 3, 
Prob > F 
R-squared
Adj R-squared = 
Root MSE
Res. dev. = 

rlong=bl*exp(-exp(-b2*(age-b3)))

16 I

bl i
b2 |
b3 |

and correlations are asymptotic approximations)

Wenow could drop newage. Only the original 11 observations have nonmissing rlong 
values, so only they will enter into model estimation. Stata calculates predicted values for any 
observation with nonmissing _v values, however. We can therefore obtain such predictions for 
both the 11 real observations and the 89 artificial ones, which will allow us to graph the 
regression curve accurately.

Lichen growth starts with a size close to zero, so we chose the gom3 Gompertz function 
rather than gom4 (which incorporates a nonzero takeoff level, the parameter b0). Figure 8.16 
suggests an asymptotic upper limit somewhere near 34, suggesting that 34 should be a good
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Figure 8.17o
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We obtain predicted values using predict, and graph these to see the regression curve, 
he yline option is used to display the lower and estimated upper limits (0 and 34.366) of 

this curve in Figure 8.17.
. predict yhat
(option yhat assumed; fitted values)

. graph twoway scatter rlong age
II mspline yhat age, cipattern(solid) bands(50)
II , legend(off) yline(0 34.366)
ytitle("Rhizocarpon long axis.

Especially when working with sparse data or a relatively complex model, nonlinear 
regression programs can be quite sensitive to their initial parameter estimates. The init 
option with nl permits researchers to suggest their own initial values if the default values 
supplied by an ^function program do not seem to work. Previous experience with similar data, 
or publications by other researchers, could help supply suitable initial values. Alternatively, 
we could estimate through trial and error by employing generate to calculate predicted 
values based on arbitrarily-chosen sets of parameter values and graph to compare the 
resulting predictions with the data.
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Stata’s basic regress and anova commands perform ordinary least squares (OLS) 
regression. The popularity of OLS derives in part from its theoretical advantages given “ideal” 
data. If errors are normally, independently, and identically distributed (normal i.i.d.), then OLS 
is more efficient than any other unbiased estimator. The flip side of this statement often gets 
overlooked: if errors are not normal, or not i.i.d., then other unbiased estimators might 
outperform OLS. In fact, the efficiency of OLS degrades quickly in the face of heavy-tailed 
(outlier-prone) error distributions. Yet such distributions are common in many fields.

OLS tends to track outliers, fitting them at the expense of the rest of the sample. Over the 
long run, this leads to greater sample-to-sample variation or inefficiency when samples often 
contain outliers. Robust regression methods aim to achieve almost the efficiency of OLS with 
ideal data and substantially better-than-OLS efficiency in non-ideal (for example, nonnormal 
errors) situations. “Robust regression” encompasses a variety of different techniques, each with 
advantages and drawbacks for dealing with problematic data. This chapter introduces two 
v arieties of robust regression, rreg and qreg, and briefly compares their results with those 
of OLS ( regress ).

rreg and qreg resist the pull ofoutliers, giving them better-than-OLS efficiency in the 
face of nonnormal, heavy-tailed error distributions. They share the OLS assumption that errors 
are independent and identically distributed, however. As a result, their standard errors, tests, 
and confidence intervals are not trustworthy in the presence of heteroskedasticity or correlated 
errors. To relax the assumption of independent, identically distributed errors when using 
regress or certain other modeling commands (although not rreg or qreg ), Stata offers 
options that estimate robust standard errors.

For clarity, this chapter focuses mostly on two-variable examples, but robust multiple 
regression or 7V-way ANOVA are straightforward using the same commands. Chapter 14 
returns to the topic of robustness, showing how we can use Monte Carlo experiments to 
evaluate competing statistical techniques.

Several of the techniques described in this chapter are available through menu selections: 
Statistics - Nonparametric analysis - Quantile regression
Statistics - Linear regression and related - Linear regression - Robust SE

I
--------- ' ' ' ' - zi: >

. 1 - •
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Example Commands

i.

p

I

Regression with Ideal Data

20) contrived dataset

20

To clarify the issue of robustness, we will explore the small (n 
robust l.dta\

vars : 
size:

I

Contains data from C:\data\robustl.dta 
obs :

j
il

. rreg y xl x2 x3

Performs robust regression of y on three predictors, using iteratively reweighted least 
squares with Huber and biweight functions tuned for 95% Gaussian efficiency. Given 
appropriately configured data, rreg can also obtain robust means, confidence intervals, 
difference of means tests, and ANOVA or ANCOVA.

. rreg y xl x2 x3, nolog tune(6) genwt(rweight) iterate(10)
Performs robust regression of v on three predictors. The options shown above tell Stata not 
to print the iteration log, to use a tuning constant of 6 (which downweights outliers more 
steeply than the default 7), to generate a new variable (arbitrarily named rweight) holding 
the final-iteration robust weights for each observation, and to limit the maximum number 
of iterations to 10.

. qreg y xl x2 x3

Performs quantile regression, also known as least absolute value (LAV) or minimum Ll- 
norm regression, ofy on three predictors. By default, qreg models the conditional .5 
quantile (approximate median) ofy as a linear function of the predictor variables, and thus 
provides “median regression.”

. qreg y xl x2 x3, quantile(.25)

Performs quantile regression modeling the conditional .25 quantile (first quartile) of y as 
a linear function ofxl, x2, and.vd.

. bsqreg y xl x2 x3, rep(100)
Performs quantile regression, with standard errors estimated by bootstrap data resampling 
with 100 repetitions (default is rep (20)).

. predict e, resid
Calculates residual values (arbitrarily named e) after any regress, rreg, qreg, or 
bsqreg command. Similarly, predict yhat calculates the predicted values of y. 
Other predict options apply, with some restrictions.

regress y xl x2 x3, robust
Performs OLS regression of v on three predictors. Coefficient variances, and hence 
standard errors, are estimated by a robust method (Huber/White or sandwich) that does not 
assume identically distributed errors. With the cluster () option, one source of 
correlation among the errors can be accommodated as well. The User's Guide describes 
the reasoning behind these methods.

Robust regression examples 1 
(artificial data)

10 17 Jul 2005 09:35
880 (99.9% of memory free)
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variable label

+ e4

Sorted by:

clear
set obs 20

. generate e2 = el

. replace e2 = 19.89 in 2

. generate y2 = 10 + 2*x + e2

. regress yl x

ss df MS

Total | 156.350921 19 8.22899586

yi I Coef. Std. Err. t P>| t| [95% Conf. Interval]

I

I

yi
The commands that manufactured these first three variables are

. generate x = invnorm(uniform() ) 

. generate el = invnorm(uniform()) 

. generate yl = 10 + 2*x + el

x 
el 
yi 
e2 
y2
x 3 
e3 
y3 
e4 
y4

134.059351
22.29157

2.048057 
9.963161

float 
float 
float 
float 
float 
float 
float 
float 
float 
float

%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g
%9.0g 
%9.0g

display 
format

.1968465

.2499861

1
18

134.059351 
1.23842055

value
label

10.40
39.85

1.634498
9.43796

2.461616
10.48836

storage 
type

20 
1C3.25 
0.3000 
0.8574 
0.3495 
1.1128

0.000
-0.000

. predict yhatlo

With real data, coding mistakes and measurement errors sometimes create wildly incorrect 
values. To simulate this, we might shift the second observation’s error from-0.89 to 19.89:

Source |

x I 
cons |

Model |
Residual |

The variables x and el each contain 20 random values from independent standard normal 
distributions, yl contains 20 values produced by the regression model:

10 + 2x + el

Similar manipulations produce the other variables in robustl.dta.
yl and x present an ideal regression problem: the expected value of yl really is a linear 

function ofx, and errors come from normal, independent, and identical distributions—because 
we defined them that way. OLS does a good job of estimating the true intercept (10) and slope 
(2), obtaining the line shown in Figure 9.1.

Normal X
Normal errors 
yl = 10 + 2*x + el
Normal errors with 1 outlier 
y2 = 10 + 2*x + e2
Normal X with 1 leverage obs .
Normal errors with 1 extreme 
y3 = 10 + 2*x3 + e3 
Skewed errors 
y4 = 10 + 2*x

variable name

Number of obs = 
F( 1, 18) =
Prob > F 
R-squared 
Adj R-squared = 
Root MSE
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Figure 9.1
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. rreg yl x

4 :

Robust regressionI estimates

F

Coe f . t P>|t I [95% Conf Interval]

I I
I I

2.047813
9.936163

. 2290049

.2908259
8 . 94

34.17
0.000
0.000

1.566692
9.325161

maximum difference in 
maximum difference in 
maximum difference in

2.528935
10.54717

20
79.96 

0.0000

cxi o

0 
Normal X

ii

co

OLS line |

Huber iteration 1:
Huber iteration 2: 

Biweight iteration 3: 
Biweight iteration 
Biweight iteration 5:

maximum difference in i 
maximum difference in weights =weights = .35774407

. = .02181578 
weights = .14421371 
weights = .01320276 
weights = .00265408

x I 
cons |

yl I

Number of obs =
F( lz 18) =
Prob >

I
II

Std. Err.

estimanteserTheefirsfWei8htedfeaStS^Ukre^ -^.obtains robust regression
have Cook’s D value^ZatiX0.
oTs18 t °bSerVati0n USing a Huber which doXelhts

• graph twoway scatter yl x 
line yhatlo x, cipattern(solid) sort
, ytitleC'yl = 10 + 2*x + el") legend (order (2) 

label(2 "OLS line") position(ll) ring(0) cols(l))
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. qreg yl x

Iteration 1 : WLS sum of weighted deviations = 17.711531

sum of abs.

Number of obs = 20
(about 10.4)

Pseudo R2 0.6401

yi I Coef. Std. Err. t P>l t | [95% Conf. Interval]

Y Outliers

. regress y2 x

SS df MS

366.997742 19 19.3156706

Coef. Std. Err. t P>l t| [95% Conf. Interval]

Median regression
Raw sum of deviations
Min sum of deviations

Iteration
Iteration

.7662304
11 .1579

2.139896
9.65342

46.84
16.8586

. 7780232

. 9880542

.2590447

. 3564108

1
18

18.764271
19.3463039

0.98
11.29

8.26
27.09

0.000 
0.000

17.130001
16.858602

-.8683356
9.082078

1.595664
8.904628

2.400796
13.23373

y2 I
---- +

1 :
2 :

18.764271
348.233471

2.684129
10.40221

obs
18)

-

0 ..338
0.000

Model |
Residual |

weighted deviations = 
sum of abs. weighted deviations =

Number of obs = 20 
Ff 1, 18) = 0.97 
Prob > F = 0.3378 
R-squared = 0.0511 
Adj R-squared = -0.0016 
Root MSE = 4.3984

’ 5.'

Although qreg obtains reasonable parameter estimates, its standard errors here exceed those 
of regress (OLS) and rreg. Given ideal data, qreg is the least efficient of these three 
estimators. The following sections view their performance with less ideal data.

Source I

This “ideal data” example includes no serious outliers, so here rreg is unneeded. The 
rreg intercept and slope estimates resemble those obtained by regress (and are not far 
from the true values 10 and 2), but they have slightly larger estimated standard errors. Given 
normal i.i.d. errors, as in this example, rreg theoretically possesses about 95% of the 
efficiency of OLS.

Total |

x I 
cons |

x I 
cons |

The variable^ is identical toj^f, but with one outlier caused by the “wild” error of observation 
#2. OLS has little resistance to outliers, so this shift in observation #2 (at upper left in Figure 
9.2) substantially changes the regress results:

rreg and regress both belong to the family of M-estimators (for maximum­
likelihood). An alternative order-statistic strategy called L-estimation fits quantiles ofv, rather 
than its expectation or mean. For example, we could model how the median (.5 quantile) of v 
changes with x. qreg , an Ll-type estimator, accomplishes such quantile regression and 
provides another method with good resistance to outliers:
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"OLS line (regress) *'

Robust regression estimates

Coef. t P>|t |

Figure 9.2

o

T-1 2

CXi

1.979015
10.00897

.2493146

.3071265

OLS regression (regress) 
robust regression (rreg)

7.94
32.59

0.000
0.000

1.453007
9.360986

2.505023
13.65695

19
63.01 

0.0000

0 
Normal X

CM 
+ m 
o *“

ii

-2

-•a

y2 i
---------+_

x I
cons |

o
CM CM 
<D

I II I I I 
legend(order(2 3) position(l)

. ■

|

Number of obs =
F( 1, 17) =
Prob > F =

"robust regression (rreg)” 
x

x, cipattern(solid) sort
x, cipattern(longdash) sort

. predict yhat2o
(option xb assumed; fitted values)
. label variable yhat2o

tThA ^erDr2ai?eSj116 ’ntercePt (frorn9-93610 11 • 1579) and lessens the slope (from 2.048
r° i-a i - R ^aS dropped from ■85’7410.0511. Standard errors quadrupled, and the OLS slope 
(solid line m Figure 9.2) no longer significantly differs from zero.

The outlier has little impact on rreg, however, as shown by the dashed line in Figure 9.2.
e ro ust coefficients barely change, and remain close to the true parameters 10 and 2- nor do 

the robust standard errors increase much.
. rreg y2 x, nolog genwt(rweight2)

Std. Err.

. predict yhat2r
(option xb assumed; fitted values)
. label variable yhat2r

• graph twoway scatter y2 
line yhat2o 
line yhat2r
, ytitle(”y2 = 10 + 2*x + e2”)

ringtO) cols(l) margin(sides))

(95% Conf. Interval]
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The The
. predict resid2r, resid
. list y2 x resid2r rweight2

y2 res id!rx

. regress y2 x [aweight = rweight2]

qreg y2 x, nolog

Number of obs = 20
(about 10.88)

Pseudo R2 0.3613

Coe f . Stc. Err . t P> I 11 [95% Conf. Interval]y2 I
-----+

Residuals near zero produce weights near one; farther-out residuals get progressively lower 
weights. Observation #2 has been automatically set aside as too influential because of Cook’s 
D > 1 • rreg assigns its n\ eight2 as “missing." so this observation has no effect on the final 
estimates. The same final estimates, although not the correct standard errors or tests, could be 
obtained using regress with analytical weights (results not shown):

Median regression
Raw sum of deviaziors
Min sum of deviations

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ■
I
I
I
I
I

14 . 14
12.66
12.74
12.70
14.19

11 . 40
13.26
10.88
9.58
12.41

9.80
8.12
10.40
9.35

11.16

5.37
26.19
5.93
8.58
6.16

-0
-0
-C
0.33

.41:5944

.50=8526
'0.000
0.000

.9588014
9.045941

2.684055
11.18406

W'

1.6176=5 
-.25811=9 
- .4551811 
-.8909839 
-.01447=“

9 9'712 388 
9“5=1674

4 . 44
19.88

-0 .69
55
4 9
42

-.7403C-!
19.84221

- . 6 3 54 5 11
1.2624 94 

-1.731421

1.156554
-.8005C = 5
1.360’5
.17222 

.4979552

0 . 44 
0.69 
0 . "8
0 . n9 
1.26

1 .
2 .
3 .
4 .
5 .

1.27 
1.47 
1.61
1.31 
2.12

.5202664
1.885513 

-.67259=2 
-1.9923=9 
-.092525"

11 .
12 .
13 .
14 .
15 .

6.
7 .
8 .
9 .

10 .

56.65
36.20036

16.
17 .
18.
19 .
20 .

-1
-1
-1
-1 . 07

-1 . 97
85
"4
36

1.821428
10.115

Applied to the regression of y2 on x, qreg also resists the outlier’s influence and 
performs better than regress, but not as well as rreg. qreg appears less efficient than 
rreg , and in this sample its coefficient estimates are slightly farther from the true values of 
10 and 2.

nolog option above caused Stata not to print the iteration log. 
genwt {rweight2) option saved robust weights as a variable named nveight2.

rweight2 I 
--------- I 
94644465 |

. I 
73 | 
8 4 1

x I 
cons I

.’25"631 | 
---------- I 
.5-2-3631 I 
.9375=391 ! 
.=2616386 I 

I 
I 
I 

.9736:863 I 

.6=04=366 | 

.955-2=33 j 

.64644918 I 

.99913568 I 
---------- I 
.-588-073 i 
.9933=589 i 
.9"95“817 j 
.9230-041 l 
.9999-651 I
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)

Number of obs = 20

Pseudo R2 0.3613

y2 I Coef. t P>| t [95* Conf. Interval]

X Outliers (Leverage)

. regress y3 x3

ss df MS

366.997742 19 19.3156706

73 I Coef. Std. Err. t P> I t I [95% Conf. Interval]

. predict yhat3o

. label variable yhat3o "OLS regression (regress)”

I
i

(fitting base model,
(bootstrapping 

139.306724
227.691018

1.621428
10.115

.1871973

.8063436

.4084728

.4774718

1
18

139.306724
12.649501

4 . 46
21.18

0.004
0.000

-1.014512
9.115244

. 9632587
9.111869

- . 227938
12.50337

2.679598
11.11813

20
11.01 

0.0038 
0.3796 
0.3451
3.5566

-.6212248
10.80931

4 I'

I
Rl

I

-3.32
13.41

0.000
0.000

|(

Source |

x I 
cons |

x3 |
cons |

Median regression, bootstrap(50) SEs
Raw sum of deviations 56.68 (about 10.88)
Min sum of deviations 36.20036

Number of obs = 
F( 1, 18) =
Prcb > F 
R-squared 
Adj R-squared = 
Root MSE

Model | 
Residual | 
------------ +

Total |

rreg, qreg.and bsqreg deal comfortably with ^-outliers, unless the observations with 
unusual y values have unusual x values (leverage) too. The yd and x3 variables in robust.dta 
present an extreme example of leverage. Apart from the leverage observation (#2) these 
variables equaly/ and*.

The high leverage of observation #2, combined with its exceptional v3 value, make it 
influential: regress and qreg both track this outlier, reporting that the “best-fittins” line 
has a negative slope (Figure 9.3).

Std. Err.

Monte Carlo researchers have also noticed that the standard errors calculated by qreg 
sometimes underestimate the true sample-to-sample variation, particularly with smaller 
samples. As an alternative, Stata provides the command bsqreg. which performs the same 
median or quantile regression as qreg , but employs bootstrapping (data resampling) to 
estimate the standard errors. The option rep ( ) controls the number of repetitions? Its 
default is rep (20), which is enough for exploratory work. Before reaching “final” 
conclusions, we might take the time to draw 200 or more bootstrap samples. Both qreg and 
bsqreg fit identical models. In the example below, bsqreg also obtains similar standard 
errors. Chapter 14 returns to the topic of bootstrapping.
. bsqreg y2 x, rep(50)
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. qreg y3 x3, nolog

Number of obs = 20

Pseudo R2 0.0086

¥3 I Coef. Std. Err. t (95% Conf. Interval]

. predict yhat3q

I

y3 i Coef. Std. Err. P>! ti [95% Conf.t Interval]

. predict yhat3r

Figure 9.3

0-15

Median regression
Raw sum of deviations 56.68 (about 10.88)
Min sum of deviations 56.19466

I I
I I
I I

.2493146

.3071265

. 347103
1 . 419214

median regression (qreg) 
robust regression (rreg) 
OLS regression (regress)

-1.79
8.01

-1.351458
8.383676

1.453007
9.360986

2.505023
10.65695

. 1070146
14.34699

19
63.01 

0.0000

label variable yhat3q "median regression (qreg)" 

. rreg y3 x3, nolog 
Robust regression estimates

o 
CM

° J CO

1.979015
10.00897

0.090
0.000

co o 
<D v- -

-.6222217
11.36533

04+ ° "
O

O 
04 ~

7.94
32.59

0.000
0.000

ll

9“
-20 -10 -5

Normal X with 1 leverage obs.

x3 | 
cons I

x3 | 
cons |

. label variable yhat3r "robust regression (rreg)"

. graph twoway scatter y3 x3
line yhat3o x3, cipattern(solid) sort
line yhat3r x3, cipattern(longdash) sort
line yhat3q x3, cipattern(shortdash) sort , 

ytitle(My3 = 10 + 2*x + e3") legend(order(4 3 2) position(5) 
ring(0) cols(l) margin(sides)) ylabel (-30(10)30)

Number of obs =
F( 1, 17) =
Prob > F
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i 1

i

ss of MS

38 3
It

558.212291

y4 I p> 111t [95% Conf. Interval]

is skewed, as with e4, 
^-intercept estimates.

155.870363
402.341 909

2.64
9.39

0.017
0.000

rreg
I to

The next section illustrates

.4514157 
7.744406

3.96536
12.20696

■

• Z Z i — c •
2 2 * * *

. 8362 = 62
1.062046

20
6.97 

0.0166 
0.2792 
0.2392 
4.7278

2.208388
9.975681

Source |

x I 
cons |

Model |
Residual I

Total |

Asymmetrical Error Distributions

Std. Err

1I

■- 

r

The same is not true for most robust estimators. Unless errors are symmetrical, the median 
me fit by qreg, or the biweight line fit by rreg, does not theoretically coincide with the 

expected-j, line estimated by regress . So long as the errors’ skew reflects only a small 
fraction of their distribution, rreg might exhibit little bias. But when the entire distribution 

rreg will downweight mostly one side, resulting in noticeably biased

The variable e4 in robustl.dta has a skewed and outlier-filled distribution: e4 equals el (a 
standard normal variable) raised to the fourth power, and then adjusted to have 0 mean. These 
skewed errors, plus the linear relationship with x, define the variable v4 = 10 + 2r + e4. 
Regardless of an error distribution's shape, OLS remains an unbiased estimator. Over the lon<> 
run, its estimates should center on the true parameter values.
. regress y4 x

Number of obs = 
Ff 1, 18) = 
Prob > F = 
R-squared = 
Adj R-squared = 
Root MSE19 29.3795943

igure 9.3 illustrates that regress and qreg are not robust against lexerage (.v- 
outliers). The rreg program, however, not only downweights large-residual observations 
(which by itself gives little protection against leverage), but also automatically sets aside 
observations with Cook’s D (influence) statistics greater than 1. This happened when we 
regressed y3 on aJ; rreg ignored the one influential observation and produced a more 
reasonable regression line with a positive slope, based on the remaining 19 observations.

Setting aside high-influence observations, as done by rreg , provides a simple but not 
toolproofway to deal with leverage. More comprehensive methods, termed bounded-influence 
regression, also exist and could be implemented in a Stata program.

The examples in Figures 9.2 and 9.3 involve single outliers, but robust procedures can 
handle more. Too many severe outliers, or a cluster of similar outliers, might cause them to 
break down. But in such situations, which are often noticeable in diagnostic plots, the analvst 
must question whether fitting a linear model makes sense. It might be worthwhile to seek an 
explicit model for what is causing die outliers to be different.

Monte Carlo experiments (illustrated in Chapter 14) confirm that estimators like rr: 
and qreg generally remain unbiased, with better-than-OLS efficiency, when applied 
heavy-tailed (outlier-prone) but symmetrical error distributions.
what can happen when errors have asymmetrical distributions.
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rreg y4 x, nolog

t P> 111 [95% Conf. Interval]

a =

Figure 9.4

o

I

2-2 -1 1

Robust Analysis of Variance

I

J

ID J
CM ” true model 

OLS regression (regress) 
robust regression (rreg)

273
7'69

.0537435

.0692515
36.32

109.55
0.000
0.000

1.839163
7.333278

2.064984
7.620061

co 
<D

O 
04 "

0 
Normal X

X 
cons

College faculty salaries 
17 Jul 2005 09:32

^tD ,

-

Although the rreg y-intercept in Figure 9.4 is too low, the slope remains parallel to the 
OLS line and the true model. In fact, being less affected by outliers, the rreg slope (1.95) 
is closer to the true slope (2) and has a much smaller standard error than that of regress . 
This illustrates the tradeoff of using rreg or similar estimators with skewed errors: we risk 
getting biased estimates of the v-intercept. but can still expect unbiased and relatively precise 
estimates of other regression coefficients. In many applications, such coefficients are 
substantively more interesting than they-intercept, making the tradeoff worthwhile. Moreover, 
the robust t and F tests, unlike those of OLS, do not assume normal errors.

rreg can also perform robust analysis of variance or covariance once the model is recast in 
regression form. For illustration, consider the data on college faculty salaries infaculty.dta.

Robust regression Number of obs = 20 
F( 1, 18) = 1319.29 
Prob > F = 0.0000

Std. Err

Contains data from C: data\faculty.dta
obs: 226
vars: 6
size: 2,938 (99.9% of memory free)
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variableWi name variable label

Sorted by:

contents(mean pay)

pay rank gender rank*genderanova

Partial SS df MS F Prob > F

Model 1.5560e + 10 5 3.1120e+09 119.26 0.0000

Residual 5.7406et-09 220 26093824.5

Total 2.1300e+10 225 94668810.3

. tabulate gender female

Total

149 226

2
1
2

a 
analysis of variance. T” 
this dataset also contains.

I 29280
I 28711.04

storage 
type

14 9
0

display 
format

149
77

3.8062e+09
127361829

43998860.1

145.87
4.88
1.69

0.0000
0.0282
0.1876

0.7305
0.7244

Gender |
(dummy | Gender 

variable) |

R-squared =
Adj R-squared =

Male
Female

Academic rank
Assist Assoc

(effect coded)
"I 1 I

38622.22
38019.35

52084.9
47190

r a n k 
sex

7.6124e+09
127361829

87997720.1

rank 
gender 
female 
assoc 
full 
pay

%8.0g 
*8.0g 
*8 . Cg 
%8.0g 
%8.0g 
%9. Og

byte 
byte 
byte 
byte 
byte 
float

value 
label

!i

Male |
Female |

0 I
77 |

Number of obs = 226
Root MSE = 5108.21

1

But salary is not normally distributed, and the senior-rank averages reflect the influence of 
few highly paid outliers. Suppose we want to check these results by performing a robust 

We need effect-coded versions of the rank and gender variables, which

77 |Total |

An ordinary (OLS) analysis of variance indicates that both rank and gender significantly 
affect salary. Their interaction is not significant.

■

I 
I 

rank | 
gender I 

rank*gender I

Source |
------- +

Faculty salaries increase with rank. In this sample, men have higher average salaries: 
. table gender rank,

Gender | 
(dummy | 
variable) I

Academic rank
Gender (dummy variable)
Gender (effect coded)
Assoc Professor (effect coded) 
Full Professor (effect coded) 
Annual salary
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tabulate rank assoc

Total

Total | 64 57 105 | 226

tab rank full

Total

64 105 226

. regress pay assoc full female femassoc femfull

ss df MS

=. =. k "a * '

5."406e-0? 22 0

2.1300e-rl :-.al 225 94668810 3

C oef. Std. Err. t P> 11 | [95% Conf. Interval]

. test assoc full

I F(

i

iI

Academic I 
rank | 

-------- +

Academic I 
rank |

assoc = 0.0 
full = 0.0

( 1)
( 2)

64 
0 
0

64
0
0 '

145.87
0.0000

543.84 99 
783.9227 
457.6938 
543.8499 
783.9227 
457.6938

0
0

57

0 I
105 |

0 I

0.223 
0.000 
0.028 
0.193 
0.068 
0.000

64
105
57

64
105
57

-1735.722
9107.957 

-1913.199 
-362.2359 
-2981.236
38082.51

407.9229
12197.88 

-109.1483
1781.409 
108.6819 
39886.56

226 
119.26 
0.0000 
0.7305 
0.7244 
5108.2

Assist |
Assoc |
Full |

-663.8995
10652.92 

-1011.174
709.5864 

-1436.277
38984.53

0
105

0

3 . 1120e + 09
26093824.5

c c e _

Assoc Professor 
-1

-1.22 
13.59 
-2.21
1.30 

-1.83 
85.18

2, 220) =
Prob > F =

Robust Regression

Assist |
Assoc |
Full |

assoc | 
full I 

female I 
femassoc I 
femfull 

cons

Full Professor 
-1

(effect coded) 
0

0 I
0 I

57 |

. generate femassoc = female*assoc

. generate femfull = female* full

57 |Total |

1 I

Males and assistant professors are “omitted categories” in 
duplicate the previous ANOVA using regression:

(effect coded)
0 1 I

this example. Now we can

Number of obs = 
F( 5, 220) = 
Prob > F = 
R-squared = 
Adj R-squared = 
Root MSE

^faculty.dta did not already have these effecKoded variables (female, assoc, and fall) we 
could create them from gender and rank using a series of generate and replace 
statements. We also need two interaction terms representing female associate professors and
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test female

( 1) female = o. :■

F(

test femassoc femfull

F (

. label variable predpayl "OLS predicted salary”
table gender rank, contents(mean predpayl)

rar. •:
Fulli

To perform a robust analysis of variance, apply rreg to this model:
rreg pay assoc full female femassoc femfull,I nolog

Robust regression

pay I Coef. Std. Z t P> r| [95% Conf. Interval]

2.22
9.05

femassoc = 
femfull =

1.69 
0.1876

!

Gender 
(dummy 
variable)

. predict predpayl
(oprion xb assumed; fizzed values

( 1)
( 2)

I 292:3
I 2 8 711.;-:

I
I
I

:. o
C . 0

52084.9
47190

38
48

0.492 
0.000 
0.053 
0.666
0.168 
0.000

-1218.588
8463.767 

-1509.394 
-705.1587 
-2214.878
37571.97

587.2956
11066.83
10.40395
1100.725
388.1815
39091.77

226
138.25 
0.0000

*

Assisz Assoc

458
660 
385.5’78 
458.1588
660.4048 
385.5778

-315.6463 
9"65.296 

-749.4949 
197.7833 
-913.348 
38331.87

-0.69 
14.79 
-1.94
0.43 

-1.38 
99.41

Male
Female

4.88
0.02=2

1, 222) =
Proc > F =

2, 221) =
Prob > F =

regress followed by the appropriate test commands obtains exactly the same R 2 
and F test results that we found earlier using anova . Predicted values from this regression 
equal the mean salaries.

Predicted values (means). R ~. and F tests would also be the same regardless of which 
categories we chose to omit from the regression. Our “omitted categories," males and assistant 
professors, are not really absent. Their information is implied by the included categories: if 
a faculty member is not female, he must be male, and so forth.

I

11 'i

Number of obs = 
F( 5, 220) = 
Prob > F

II III I

assoc I 
full | 

female I 
femassoc | 
femfull | 
_cons |
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test assoc full

F(

test female

( female = 0.0

F( 1,

test femassoc femfull

F( 2,

Full

I

regress can duplicate ANOVA

I

I

I 
i

( i)
( 2)

femassoc = 0.0 
femfull = 0.0

93
51

49760.01
46434.32

assoc = 0.0 
full = 0.0

"Robust predicted salary" 

contents(mean predpay2)

385 6

3.78
0.0532

182.67
0.0000

( 1)
( 2)

1.16
1.3144

T

I
J

220) =
Prob > F =

220) =
Prob > F =

Gender j 
(dummy | 
variable) |

2, 220) =
Prob > F = .

The male-female salaty gap among assistant and full professors appears smaller if we use 

XTsUZ’ e”"rely vanish’ h°wever’and ,1"8ender 8ap ass“i*“
With effect coding and suitable interaction terms, regress can duplicate ANOVA 

exactly, rreg can do parallel analyses, testing for differences among robust means instead 
of ordinary means (as regress and anova do). Used in similar fashion, qreg opens 
the third possibility of testing for differences among medians. For comparison, here is a 
quantile regression version of the faculty pay analysis:

Academic rank
.Assist Assoc

rreg downweights several outliers, mainly highly-paid male full professors. To see the 
robust means, again use predicted values:
. predict predpay2
(option xb assumed; fitted values)

label variable predpay2

. table gender rank,

Male ■ 28916.15
Female i 28848.29
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■ <Ireg pay assoc full female femassoc femfull, nolog
Number of obs = 226
Pseudo R2 0.5404

Coef. Std. Err. t P> 111 [95% Conf. Interval]

test assoc full

F(

test female

( 1) female = 0.0
F(

. test femassoc femfull

F(

fi

contents(mean predpay3)

i
i

■

i

. predict predpayS
(option xb assumed; fitted values)

Median regression
Raw sum of deviations
Min sum of deviations

femassoc =0.0 
femfull = 0.0

i j!

Gender 
(dummy 
variable)

( 1)
( 2)

( 1)
( 2)

28500
28950

-760 
10335 

-623.3333 
-156.6667 
-691.6667 

38300

38320
36760

208.94
0.0000

1.60
0.2039

2.91
0.0892

49950
47320

440.1693
615.7735
365.1262
440.1693
615.7735
365.1262

0.086 
0.000 
0.089 
0.722
0.263 
0.000

-1627.488
9121.43 

-1342.926 
-1024.155 
-1905.236 
37580.41

107.4881 
11548.57 
96.2594 

710.8214 
521.9031 
39019.59

2, 220) =
Prob > F =

-1.73
16.78
-1.71
-0.36 .
-1.12

104.90

i

i

. label variable predpay3 "Median predicted salary" 
. table gender rank,

1738010 (about 37360)
798870

2, 220) =
Prob > F =

1, 220) =
Prob > F =

Predicted values from this quantile regression closely resemble the median salaries in each 
subgroup, as we can verify directly:

II

assoc = 0.0 
full = 0.0

Male |
Female |

I
I Academic rank
I Assist Assoc Full

pay |

assoc | 
full | 

female | 
femassoc | 
femfull | 
_cons |
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. table gender rank, contents(median pay)

Full

Further rreg and greg AppIications

I

I
I
I Assist

28500
28950

38320
36590

49950
46530

Gender 
(dummy 
variable)

3

Male |
Female |

mean with 90% confidence interval by typing

Academic rank 
Assoc

greg thus allows us to fit models analogous to Af-way ANOVA or ANCOVA, but 
involving .5 quantiles or approximate medians instead of the usual means. In theory, .5 
quantiles and medians are the same. In practice, quantiles are approximated from actual sample 
data values, whereas the median is calculated by averaging the two central values, if a subgroup 
contains an even number of observations. The sample median and .5 quantile approximations 
then can be different, but in a way that does not much affect model interpretation.

Diagnostic statistics and plots (Chapter 7) and nonlinear transformations (Chapter 8) extend the 
usefulness of robust procedures as they do in ordinary regression. With transformed variables, 
rreg or greg fit curvilinear regression models, rreg can also robustly perform simpler 
types of analysis. To obtain a 90% confidence interval for the mean of a single variable,^, we 
could type either the usual confidence-interval command ci :
. ci y, level(90)

Or, we could get exactly the same mean and interval through a regression with no x variables:
. regress y, level (90)

Similarly, we can obtain robust
. rreg y, level(90)

greg could be used in the same way, but keep in mind the previous section’s note about how 
a .5 quantile found by greg might differ from a sample median. In any of these commands, 
the level ( ) option specifies the desired degree of confidence. If we omitthis option, Stata 
automatically displays a 95% confidence interval.

To compare two means, analysts typically employ a two-sample t test (ttes t) or one-way 
analysis of variance (oneway or anova ). As seen earlier, we can perform equivalent tests 
(yielding identical t and F statistics) with regression, for example, by regressing the 
measurement variable on a dummy variable (here cal led grow/?) representing the two categories:
. regress y group

A robust version of this test results from typing the following command:
. rreg y group

greg performs median regression by default, but it is actually a more general tool. It can 
fit linear models for any quantile of y, not just the median (.5 quantile). For example,
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withx.
• qreg y x, quant(.25)

Robust Estimates of Variance — 1

(99.9% of memory free)

variable label

e6 float %9. Og
y6 float %9. Og

e8 float %9. Og
y8 float %9. Og

y9 float %9 . Og
&

Sorted by:

the same, 
nonlinearity.

group 
e9

e7
y7

vars :
size:

storage 
type

12
24,500

byte 
float

float
float

float
float 
float

%9. Og
%9. Og

%9. Og
%9.0g

%9.0g 
%9. Og 
%9.0g

display 
format

value 
label

x 
e5 
y5

Robust regression examples 2 
(artificial data)

17 Jul 2005 09:03

regress or anova ) in the
; common 

If the

X 
errors 

(norma1

i
It

!

Contains data from C: .data\robust2.dta 
obs: 500

commands such as the following analyze how the first quartile (.25 quantile) of y changes

’ I 

-
i

I'' I

k

Assuming constant error variance, the slopes of the .25 and .75 quantile lines should be roughly 
<Ireg thus could perform a check for heteroskedasticity or subtle kinds of

Both rreg and qreg tend to perform better than OLS ( r _ 
presence of outlier-prone, nonnormal errors. All of these procedures share the 
assumption that errors follow independent and identical distributions, however. If the 
distributions of errors vary across x values or observations, then the standard errors calculated 
by anova , regress , rreg , or qreg probably will understate the true sample-to- 
sample variation, and yield unrealistically narrow confidence intervals.

regress and some other model fitting commands (although not rreg or qreg) have 
an option that estimates standard errors without relying on the strong and sometimes 
implausible assumptions of independent, identically distributed errors. This option uses an 
approach derived independently by Huber, White, and others that is sometimes referred to as 
a sandwich estimator of variance. The artificial dataset (robust2.dtd) provides a first example.

Normal errors, variance 
increases with x, mean & 
variance increase with cluster 

y9 = 10 + 2*x + e9 
(heteroskedasticity 
correlated errors)

variable name

Standard normal 
Standard normal 
y5 = 10 + 2*x + e5 
i.i.d. errors)

Contaminated normal errors: 
95% N(0, 1) , 5% (N(0, 10) 

y6 = 10 + 2xx + e6
(Contaminated normal errors) 

Centered chi-square(1) errors 
y7 = 10 + 2*x + e7 (skewed 
errors)

Normal errors, variance 
increases with x 

y8 = 10 + 2*x + e8 
(heteroskedasticity)



Robust Regression 257
-

obtain a significant positive slope. A scatterplot shows strong

rreg or

. regress y8 x

SS df MS

7582.5482 499 15.1954874

y8 | Coef. Std. Err. t P> 111 [95% Conf. Interval]

Figure 9.5
UD 
CXI

I

o

-4 4Standard normal x

I

I

1
498

1607.35658
5975.19162

1.819032
10.06642

.1571612
.154919

1607.35658
11.9983767

11.57
64.98

0.000
0.000

2.127813
10.3708

500 
133.96 
0.0000 
0.2120 
0.2104 
3.4639

1.510251
9.762047

CM

O

ii

>.

Is 
CD

2 io 
g>

co
Jo

do not appear to be identically distributed at all values ofx, the standard 
regress are untrustworthy.

Source |

I
J

When we regress on x, we < *
heteroskedasticity, however (Figure 9.5). Variation around 
x. Because errors <* 
errors, confidence intervals, and tests printed by 
qreg would face the same problem.

X I 
cons I

Total |

Model |
Residual I

Number of obs = 
F ( 1, 498) =
Prob > F 
R-squared 
Adj R-squared = 
Root MSE

0 2
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More credible standard errors and confidence inten’als for this OLS regression can be

Coef .

Robust Estimates of Variance — 2

i
y8 |

1.819032
10.06642

.1987122

. 1561S4-5
9.15

64.45
2.209449
10.37328

500
83.80 
0.0000 
0.2120 
3.4639

1.428614
9.759561

1 . 000
:. ooo

x | 
cons |

obtained by using the robust option: 
regress y3 x, robust

Robust
Std. Err

N’umbe r 
F ( 1,
Prob > F 
R-squared 
Root MSE

of obs =
4 98) =

Another robust-variance option, cluster, allows us to relax the independent-errors 
assumption in a limited way, when errors are correlated within subgroups or clusters of the data. 
The data in attract.dta describe an undergraduate social experiment that can be used for 
illustration. In this experiment, 51 college students were asked to individually rate the 
attractiveness, on a scale from 1 to 10. of photographs of unknown men and women. The 
rating exercise was repeated by each participant, given the same photos shuffled in random 
order, on four occasions during evening social events. Variable ratemale is the mean rating 
each participant gave to all the male photos in one sitting, and ratefem is the mean rating given

Although the fitted model remains unchanged, the robust standard error for the slope is 27% 
larger(.199 vs. .157) than its nonrobustcounterpart. With the robust option, the regression 
output does not show the usual ANOVA sums of squares because these no longer have their 
customary interpretation.

The rationale underlying these robust standard-error estimates is explained in the User 's 
Guide. Briefly, we give up on the classical goal of estimating true population parameters (p’s) 
for a model such as

T^Po + Pi-^ + e,
Instead, we pursue the less ambitious goal of simply estimating the sample-to-sample variation 
that our b coefficients might have, if we drew many random samples and applied OLS 
repeatedly to calculate b values for a model such as

yi = b0 + bixi + ei
We do not assume that these b estimates will con\ erge on some “true” population parameter. 
Confidence intervals formed using the robust standard errors therefore lack the classical 
interpretation of having a certain likelihood (across repeated sampling) of containing the true 
value of p. Rather, the robust confidence intervals have a certain likelihood (across repeated 
sampling) of containing b, defined as the value upon which sample b estimates converge. Thus, 
we pay for relaxing the identically-distributed-errors assumption by settling for a less 
impressive conclusion.

Regression with robust standard errors

[95_ Conf. Interval]
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or her

(99.9% of memory free)

variable label

sex

rel

Sorted by: id

. regress ratefem bac gender genbac, cluster(id)

I
N’umber of clusters (id) = 51

I
Coef. t P> 111 [95% Conf. Interval]

I

predicted ratefem = 6.49 + 2.90bac - .ligender + .2\genbac

vars : 
size :

storage 
type

8
5,508

byte 
byte 
float 
float 
byte 
float 
float 
float

.8543378 

. 3383096
1.708146
.229689

0.001 
0.036 
0.904 
0.000

1 . 180753 
-1.409504 
-3.222859
6.025423

4.612729 
-.0504741
3.638967
6.94811

204
7.75 

0.0002 
0.1264 
1.1219

value 
label

Participant number 
Participant gender (female) 
Blood alchohol content 
gender*bac interaction 
Relationship status (single) 
Days drinking in previous week 
Rated attractiveness of females 
Rated attractiveness of males

Perceived attractiveness and 
drinking (D. C. Hamilton 2003)

18 Jul 2005 17:27

display 
format

3.39
-2.16
0.12

28.24

i d 
gender 
bac 
genbac 
relstat 
drinkfrq 
ratefem 
ratemale

2.896"41
-.72998=5 

.2080535 
6.48676-

bac i 
gender | 
genbac | 
_cons |

Contains data from C:\data\attract.dta 
obs: 204

Blood alcohol content (bac) has a significant positive effect: as bac goes up, predicted 
attractiveness rating of female photos increases as well. Gender (female) has a negative effect: 
female participants tended to rate female photos as somewhat less attractive (about .73 lower) 
than male participants did. The interaction of gender and bac is weak (.21). The intercept- and 
slope-dummy variable regression model, approximately

Robust
Std. Err.

Although the data contain 204 observations, these represent only 51 individual participants. 
It seems reasonable to assume that disturbances (unmeasured influences on the ratings) were 
correlated across the repetitions by each individual. Viewing each participant’s four rating 
sessions as a cluster should yield more realistic standard error estimates. Adding the option 
cluster (id) to a regression command, as seen below, obtains robust standard errors across 
clusters defined by id (individual participant).

to female photos, gender records the participant’s (rater’s) own gender, and bac his 
blood alcohol content at the time, measured by Breathalyzer.

% 9 . 3 g 
*9.0g 
*9.0g 
*9. 3g 
%9.0g 
5 9.3-g
9 . 3g 

%9.0g

variable name

Number of obs - 
F( 3, 50) =
Prob > F = 
R-squared 
Root MSE

Regression with robust standard errors
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0 x hoc)

50) =

Coef. t P> 111 [95* Conf. Interval]

9

male participants (4.25) and the near­

positive rating-bac relationships

. regress ratemal bac gender genbac, cluster(id)

Regression with

2.261792 
.-c2=?4- 
3.5736=9 
.25C-4153

8.788985
3.352902
2.813663
4.131037

201
10.96 

0.0000 
0.3516 
1.3931

bac ;
gender
genbac 

ccr.s

0.066
0.000
0.228
0.000

-.2969004
1.53353

-11.54227
3.125049

4.246042
2.443216

-4.364301 
3.626043

1.88
5.39

I
ratemale I

Number of clusters

on males (2.90) and females (3.11) equals

Robust
Std. Err.

robust standard errors Number of obs =
F( 3, 
Prob > F 
R-squared 
Root MSE(id) = 51

The regression equation for ratings of male photos by male participants is approximately 

predicted ratemale = 3.63 ~ 4.25bac - (2.44 * 0) - (4.36 x 0 x bac)

= 3.63 + 4.25Z>ac
and for rating of male photos by female participants,

predicted ratemale = 3.63 + 4.25/mc + (2.44 x 1)  (4.35 x 1 x bac)

= 6.07 -O.llfoc
The difference between the substantial alcohol effect on male participants (4.25) and the near­
zero alcohol effect on females (-0.11) equals the interaction coefficient, -4.36. In this sample, 
males’ ratings of male photos increase steeply, and females’ ratings of male photos remain 
virtually steady, as the rater’s bac increases.

Figure 9.6 visualizes these results in a graph. We see positive rating-bac relationships 
across all subplots except for females rating males. The graphs also show other gender 
differences, including higher bac values among male participants.

can be reduced for male participants (gender = 0) to

predicted ratefem = 6.49 + 2.90bac - (.73 x 0) + (.21 x

= 6.49 + 2.90bac
and for female participants (gender = 1) to

predicted ratefem = 6.49 + 2.90bac - (.73 x 1) + (.21 x 1 x bac)

= 6.49 + 2.90bac - .73 + .2\bac
= 5.76 + 3.1 \bac

The slight difference between the effects of alcohol 
the interaction coefficient, .21.

Attractiveness ratings for photographs of males were likewise positively affected by blood 
alcohol content. Gender has a stronger effect on the ratings ofmale photos: female participants 
tended to give male photos much higher ratings than male participants did. For male-photo 
ratings, the gender x bac interaction is substantial (-4.36), although it falls short of the 05 
significance level.
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female photos, gender records the participant’s (rater’s) own gender, and bac his or her

(99.9% of memory free)

variable name variable label

sex

rel

Sorted by: id

. regress ratefem bac gender genbac, cluster(id)

Regression with robust standard errors

I
(id) = 51

I r a t e f er. Coef . P> 111t [95% Conf. Interval]

I

6.49 + 2.90/mc - .Tigender + .21ge/;/jac

display 
format

1.180753 
-1.409504 
-3.222859 
6.025423

4 . 612729
- . 0504741
3.638967
6.94811

vars :
size :

storage 
type

from C:\data\attract.dta
204

8
5, 508

value 
label

204
7.75 

0.0002 
0.1264 
1.1219

2.896741
- . 7299888 
.2080538 
6.486767

. 8 54 337 8 

.3383096 
1.708146
.229689

3.39 
-2.16 
0.12 
28.24

id 
gender 
bac 
genbac 
relstat 
drinkfrq 
ratefem 
ratemale

Contains data 
cbs :

byte 
byte 
float 
float 
byte 
float 
float 
float

0.001
0.036
0.904
0.000

Number of clusters

%9.
%9.:g 
%9..-g 
%9. Oa 
%9.0g 
%9.:g 
%9.0g

to female photos, gender records the participant’s (rater’s) 
blood alcohol content at the time, measured by Breathalyzer.

bac I 
gender j 
genbac I 
_cons j

Robust
Std. Err

Although the data contain 204 observations, these represent only 51 individual participants 
It seems reasonable to assume that disturbances (unmeasured influences on the ratines) were 
correlated across the repetitions by each individual. Viewing each participant's four ratine 
sessions as a cluster should yield more realistic standard error estimates. Addin° the option 
cluster (rd) to a regression command, as seen below, obtains robust standard errors across 
clusters defined by id (individual participant).

Perceived attractiveness and 
drinking (D. C. Hamilton 2003) 

18 Jul 2005 17:27

Blood alcohol content (bac) has a significant positive effect: as bac goes up predicted 
attractiveness rating of female photos increases as well. Gender (female) has a negative effect­
female participants tended to rate female photos as somewhat less attractive (aboLt .73 lower) 
tan male participants did. The interaction of gender and bac is weak (.21). The intercept- and 

slope-dummy variable regression model, approximately
predicted ratefem

Participant number
Participant gender (female) 
Blood alchohol content 
gender*bac interaction 
Relationship status (single) 
Days drinking in previous week 
Rated attractiveness of females 
Rated attractiveness of males

Number of obs =
F( 3, 50) =
Prob > F
R-squared
Root MSE
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Number of clusters (id) = 51

Coef. t P> 111 [95% Conf. Interval]

regress ratemal bac gender genbac, cluster(id)

Regression with robust

4.246042 
2.443216 

-4.364301
3.628043

2.261792 
.4529047 
3.573689 
.2504253

0.066 
0.000 
0.228 
0.000

201
10.96 

0.0000 
0.3516 
1.3931

8.788985
3.352902
2.813663
4.131037

-.2969004
1.53353

-11.54227
3.125049

1.88
5.39

-1.22
14.49

I 
ratemale | Robust

Std. Err.
bac | 

gender | 
genbac | 
_cons |

on males (2.90) and females (3.11) equals

can be reduced for male participants (gender = 0) to 

predicted ratefem = 6.49 + 2.90bac - (.73 x 0) + (.21 

= 6.49 + 2.90bac
and for female participants (gender = 1) to 

predicted ratefem

x 0 x frac)

standard errors

The regression equation for ratings of male photos by male participants is approximately 

predicted ratemale = 3.63 + 4.25bac + (2.44 x 0) - (4.36 x 0 * bac)

= 3.63 + 4.25bac
and for rating of male photos by female participants,

predicted ratemale = 3.63 + 4.25bac -n (2.44 x 1)  (4.36 x ] x bac)

— 6.07 - 0.1 \bac
The difference between the substantial alcohol effect on male participants (4.25) and the near­
zero alcohol effect on females (-0.11) equals the interaction coefficient, -4.36. In this sample, 
males’ ratings of male photos increase steeply, and females’ ratings of male photos remain 
virtually steady, as the rater’s bac increases.

Figure 9.6 visualizes these results in a graph. We see positive rating-bac relationships 
across all subplots except for females rating males. The graphs also show other gender 
differences, including higher bac values among male participants.

6.49 + 2.90bac- (.73 x ]) + (.21 x ] x bac)
6.49 + 2.90^c-.73 + .21^c

Number of obs =
F( 3, 50) =
Prob > F = 
R-squared 
Root. MSE

- 5.76 + 3.11 bac

The slight difference between the effects of alcohol 
the interaction coefficient, .21.

Attractiveness ratings for photographs of males were likewise positively affected by blood 
a cohol content. Gender has a stronger effect on the ratings of male photos: female participants 
tended to give male photos much higher ratings than male participants did. For male-photo 
ratings, the gender x bac interaction is substantial (-A36). although it falls short of the 05 
significance level.
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Figure 9.6Female raters Male raters
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OLS regression with robust standard errors, estimated by regress with the robust 
option, should not be confused with the robust regression estimated by rreg . Despite 
similar-sounding names, the two procedures are unrelated, and solve different problems.
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i

mlogi t 
nlogi t 
ologit 
oprobit 
probit

glogit 
gprobit

or
or

constraint 

dprobit 

glm

binreg 

blogit 

bprobi t 

clogi t 

cloglog Complementary log-log estimation, 
cnreg

■

£ V: ' • ■ • -

Interval regression, where r is either point data, interval data, left-censored data, 
or right-censored data.

logistic Logistic regression, giving odds ratios.
logit Logistic regression similar to logistic , but giving coefficients instead of 

odds ratios.
Multinomial logistic regression, with polytomousy variable.
Nested logit estimation.
Logistic regression with ordinaly variable.
Probit regression with ordinal y variable.
Probit regression, with dichotomousy variable.

The regression and ANOVA methods described in Chapters 5 through 9 require measured 
dependent or v variables. Stata also offers a full range of techniques for modeling categorical 
ordinal, and censored dependent variables. A list of some relevant commands follows. For 
more details on any ot these, type help command.

Binomial regression (generalized linear models).
Logit estimation with grouped (blocked) data.
Probit estimation with grouped (blocked) data.
Conditional fixed-effects logistic regression.

Censored-normal regression, assuming that r follows a Gaussian distribution but 
is censored at a point that might vary from observation to observation.

Defines, lists, and drops linear constraints.
Probit regression giving changes in probabilities instead of coefficients.
Generalized linear models. Includes option to model logistic, probit, 
complementary log-log links. Allows response variable to be binary 
proportional for grouped data.
Logit regression for grouped data.
Probit regression for grouped data.

heckprob Probit estimation with selection.
hetprob Heteroskedastic probit estimation.
intreg
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tobit

I

Example Commands

analysis, but reports effects as logit regression coefficients.I

I

. logistic y xl x2 x3
Performs logistic regression of {0,1} variable y on predictors xl, x2, and x3. Predictor 
variable effects are reported as odds ratios. A closely related command, 
. logit y xl x2 x3
performs essentially the same analysis, but reports effects as logit regression coefficients. 
The underlying models fit by logistic and logit are the same, so subsequent 
predictions or diagnostic tests will be identical.

roiogit Rank-ordered logit model for rankings (also known as the Plackett-Luce model, 
exploded logit model, or choice-based conjoint analysis).

s cob i t Skewed probit estimation.
svy: logit Logistic regression with complex survey data. Survey ( svy ) versions of 

many other categorical-variables modeling commands also exist.
Tobit regression, assumingy follows a Gaussian distribution but is censored at a 
known, fixed point (see cnreg for a more general version).

xtciogiog Random-effects and population-averaged cloglog models. Panel ( xt) versions 
of logit, probit, and population-averaged generalized linear models (see 
help xtgee ) also exist.

After most model-fitting commands, predict can calculate predicted values or 
probabilities. predict also obtains appropriate diagnostic statistics, such as those 
described for logistic regression in Hosmer and Lemeshow (2000). Specific predict 
options depend on the type of model just fitted. A different post-fitting command, 
predictnl , obtains nonlinear predictions and their confidence intervals (see help 
predictnl).

Examples of several of these commands appear in the next section. Most of the methods 
for modeling categorical dependent variables can be found under the following menus: 
Statistics - Binary outcomes
Statistics - Ordinal outcomes
Statistics - Categorical outcomes
Statistics - Generalized linear models (GLM)
Statistics - Cross-sectional time series

Statistics - Linear regression and related - Censored regression
After the Example Commands section below, the remainder of this chapter concentrates on 

an important family of methods called logit or logistic regression. We review basic logit 
methods for dichotomous, ordinal, and polytomous dependent variables.
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1
1

to estimated probabilities.
approximately equal-size groups.

Istat

Presents classification statistics and classification table. Istat, Iroc , and Isens 
(see below) are particularly useful when the point of analysis is classification. These 
commands all refer to the previously-fit logistic' model.

Iroc

Graphs the receiver operating characteristic (ROC) curve, and calculates area under the 
curve.

. Isens

Graphs both sensitivity and specificity versus the probability cutoff.
■ predict phat

Generates a new variable (here arbitrarily namedphat) equal to predicted probabilities that 
y- 1 based on the most recent logistic model.

. predict dX2, dx2
Generates a new variable (arbitrarily named dX2), the diagnostic statistic measuring 
change in Pearson chi-squared, from the most recent logistic analysis.

. mlogit y xl x2 x3, base(3) rrr nolog
Perfonns multinomial logistic regression of multiple-category variable y on three x 
vanabJe5. Option base (3) specifiesy = 3 as the base category for comparison; rrr 
calls for relative risk ratios instead of regression coefficients; and nolog suppresses 
display of the log likelihood on each iteration.

• Predict P2, outcome(2)
Generates a new variable (arbitrarily named P2) representing the predicted probability that 
) based on the most recent mlogit analysis.

. glm success xl x2 x3, family(binomial trials) eform
Performs a logistic regression via generalized linear modeling using tabulated rather than 
individual-observation data. The variable success gives the number of times that the 
outcome of interest occurred, and trials gives the number of times it could have occurred 
for each combination of the predictors xl, x2, and x3. That is, success/trials would equal 
the proportion of times that an outcome such as “patient recovers” occurred. The eform 
option asks for results in the form of odds ratios (“exponentiated form”) rather than logit 
coefficients.

. cnreg y xl x2 x3, censored(cen)
Performs censored-normal regression ofmeasurement variable^ on three predictorsxl,x2, 
and x3. If an observation’s true y value is unknown due to left or right censoring, it is 
replaced for this regression by the nearest y value at which censoring occurs. The 
censoring variable cen is a {-1,0,1} indicator of whether each observation’s value ofy has 
been left censored, not censored, or right censored.

. Ifit

Presents a Pearson chi-squared goodness-of-fit test for the fitted logistic model- observed 
versus expected frequencies of r = 1, using cells defined by the covariate (x-variable) 
patterns. When a arge number of.v patterns exist, we might want to group them according 
to estimated probabilities. Ifit, group(10) would perform the test with 10
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Space Shuttle Data

excellent discussion about data and analytical issues. His comments

(99.9% of memory free)

variable name variable label

flbl

dlbl

comments str55 %55s

Sorted by:

I • list flight-temp, sepby(year)

flight month dayI date distressyear temp i

none

none

1

I
I

J

I

I

1.
2.

+
I
I
I
I
I-
I
I
I
I-
I
I
I
I
I -
I
I
I
I
I
I -
I
I
I
I
I ■
I ;
I ; 
I i

STS_41-E 
STS_41-C 
STS_41-D 
STS_41-G 
STS 51-A

STS-6
STS-7
STS-8
STS-9

STS-3
STS-4
STS-5

STS-1
STS-2

storage 
type

2
4
8

10
11

4
6
8

11

3
6

11

4
11

%8.0g 
%8.0g 
%8.0g 
%8.0g 
%8.0g 
%8.0g 
%9.0g

display 
format

24
12
29
17
29
27
3

30

3
6

30
5
8

4
18
30
28

22
27
11

12
12

1985
1985
1985
1985
1985
1985
1985
19.8.5

1984
1984
1984
1984
1984

1983
1983
1983
1983

1982
1982
1982

1981
1981

value
label

9155
9233
9250
9299
9341
9370
9407 

--9-434

8799
8862
9008
9044
9078

8494
8569
8642
8732

8116
8213
8350

7772
7986

none
1 or 2

or 2 
none 
none 
none

I
I
I
I
I
I
I
I
I
I
I

I 
I 
I 
I
I 
I

15 .
16 .
17 .
18 .
19.
20.
21 .
22 .

flight 
month 
day 
year 
distress 
temp 
damage

STS_51-C 
STS_51-D 
STS_51-B 
STS_51-G 
STS_51-F 
STS_51-I 
STS_51-J 
STS 61-A

1
4
4
6
7
8

10
.10.

53
67
75
70
81
76
79
75

byte 
byte 
byte 
int 
byte 
byte 
byte

69 
8 0 
68

67
72
73
70

Contains data from C:\data\shuttle.dta 
obs: 25

vars: g
size: 1,675

57
63

6.
7 .
8 .
9.

10.
11.
12 .
13.
14 .

3.
4 .
5.

78
67

1 or 2
3 plus
3 plus 

none 
none

Flight
Month of launch 
Day of launch 
Year of launch
Thermal distress incidents
Joint temperature, degrees F
Damage severity index (Tufte 

1997)
Comments (Tufte 1997)

First 25 space shuttle fliahts 
20 Jul 2005 10:40

3 plus
3 plus
3 plus
3 plus
1 or 2
1 or 2

none
3 plus

Our main example for this chapter, shuttle.dta, involves data covering the first 25 flights of the 
U.S. space shuttle. These data contain evidence that, if properly analyzed, might have 
persuaded NASA officials not to launch Challenger on its last, fatal flight in 1985 (that was 
25th shuttle flight, designated STS 51 -L). The data are drawn from the Report of the Presiden­
tial Commission on the Space Shuttle Challenger Accident (1986) and from Tufte (1997). 
Tufte’s book contains an excellent discussion about data and analytical issues. His comments 
regarding specific shuttle flights are included as a string variable in these data.

66 I
70 !

I 
I 
I 
I
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:r
23. 11 26 1985 9461

3 plus

temp

date

Freq. Percent Cum.

23 100.00

Freq. Percent Cum.

23 100.00

lb
4 /

Thermal 
distress 
incidents

24 .
25.

II
I

I
I
I

9
6
8

9
6
8

1 
1

12
28

39.13
26.09
34.78

1986
1986

9508
9524

39.13
65.22

100.00

Thermal 
distress 
incidents

39.13
26.09
34.78

39.13
65.22

100.00

I STS_61-B |---------
I STS_61-C
I STS 51-L

76 | __| 
58 | 
31 I

Total |

Total |

0 I
1 I
2 I

This chapter examines three of the shuttle.dta variables: 
distress

none | 
1 or 2 | 
3 plus |

I 1 or 2

The number of “thermal distress incidents,” in which hot gas blow-through or 
charring damaged joint seals of a flight’s booster rockets. Bum-through of a 
ooster joint seal precipitated the Challenger disaster. Many previous flights had 

experienced less severe damage, so the joint-seals were known to be a source of 
possible danger.
The calculated joint temperature at launch time, in degrees Fahrenheit 
Temperature depends largely on weather. Rubber O-rings sealing the booster 
rocket joints become less flexible when cold.
Date, measured in days elapsed since January 1,1960 (an arbitrary starting point) 
date is generated from the month, day, and year of launch using the mdy (month- 
day-year to elapsed time; see help dates ) function:

generate date = mdy(month, day, year)

. label variable date "Date (days since 1/1/60)"
Launch date matters because several changes over the course of the shuttle program might 

have made it riskier. Booster rocket walls were thinned to save weight and increase payloads 
and joint seals were subjected to higher-pressure testing. Furthermore, the reusable shuttle 
hardware was aging. So we might ask, did the probability of booster joint damage (one or more 
distress incidents) increase with launch date?

distress is a labeled numeric variable:
. tabulate distress

Ordinarily, tabulate displays the labels, but the nolabel option reveals that the 
underlying numerical codes are 0 = “none”, 1 = “1 or 2”, and 2 = “3 plus.” 
. tabulate distress, nolabel
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2

label variable any "Any thermal distress"

any

0 Total

Total | 9 23

I coef

Log likelihood = -12.991096

I Coef. '-> I z Iz (95% Conf. Interval]

log odds, of any distress incidents:

I

I

I

We can use these codes to create 
one or more distress incidents:

. replace any = 1 if distress
(8 real changes made)

. generate any = distress
(2 missing values generated)

9 
0
0

e 
=

• r -

.05“
-6.93e-06
-3 6. ■’8456

Thermal 
distress 
incidents

.00418S4

.5222396
1'020907 
e.13116

23
4.81 

0.0283 
0.1561

.: Gillos 
9.517217

Number of cbs 
LR chi2.1) 
Prob > chi2 
Pseudo ?,2

0 I
6 I
8 I

Iteration 0:
Iteration 1:
Iteration 2:
Iteration 3:
Logit estimates

To see what this accomplished, 
. tabulate distress

1 I

Logistic regression models how a {0,1} dichotomy such as any depends on one or more* 
regress and most other model-fitting

14 |

a new dummy variable, any, coded 0 for no distress and 1 for

variables. The syntax of logit resembles that of 
commands, with the dependent variable listed first.
. logit any date,

I Any thermal distress 
I 
I 
+ 

none I 
1 or 2 | 
3 plus | ------ +.

any | 
---- + 
date | 
cons I

Sea. brr.

The logit iterative estimation procedure maximizes the logarithm of the likelihood 
function, shown at the output’s top. At iteration 0, the log likelihood describes the fit of a 
model including only the constant. The last log likelihood describes the fit of the final model, 

L =-18.13116+ .0020907</ate |-10
where L represents the predicted logit, or

L = ln[P(a/y’ = 1) / P(any = 0)] [! 0.2]
An overall %2 test at the upper right evaluates the null hypothesis that all coefficients in the 

model, except the constant, equal zero,
X2 =-2(ln$£I-InS£f) [10-3]

where In j is the initial or iteration 0 (model with constant only) log likelihood, and In is 
the final iteration’s log likelihood. Here,

-1. 91

icc likelihood = -15.394543 
leg likelihood = -13.01923 
leg likelihood = -12.991146 
log likelihood = -12.991096
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J

2 = 1 - In / In ££< [10.4]

2

’’I

I

x2 =-2[-15.394543 - (-12.991096)]
= 4.81

The probability of a greater X2, with 1 degree of freedom (the difference in complexity between 
initial and final models), is low enough (.0283) to reject the null hypothesis in this example. 
Consequently, date does have a significant effect.

Less accurate, though convenient, tests are provided by the asymptotic z (standard normal) 
statistics displayed with logit results. With one predictor variable, that predictor’s ’ 
statistic and the overall X2 statistic test equivalent hypotheses, analogous to the usual t and F 
statistics in simple OLS regression. Unlike their OLS counterparts, the loeitz approximation 
and X tests sometimes disagree (they do here). The X2 test has more general validity.

Like Stata’s other maximum-likelihood estimation procedures, logit displays a pseudo 
R with its output:

pseudo R
For this example,

pseudo R 1 -(-12.991096)/(-15.394543)
= .1561

Although they provide a quick way to describe or compare the fit of different models for the 
same dependent variable, pseudo R 2 statistics lack the straightforward explained-variance 
interpretation of true R 2 in OLS regression.

After logit,the predict command(with no options) obtains predicted probabilities.
Phat = 1 /(1 + e £) [10.5]

Graphed against date, these probabilities follow an S-shaped logistic curve as seen in Figure
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Figure 10.1

7500 8000 9000 9500

I
 . z. J25359

I

8500
Date (days since 1/1/60)

. display exp(_b[date])A100

i r 
£L

I r

Or. we could simply include an or (odds ratio) option on the logit command line. An 
alternative way to obtain odds ratios employs the logistic command described in the next 
section, logistic fits exactly the same model as logit, but its default output table 
displays odds ratios rather than coefficients.

. predict Phat
label variable Phat "Predicted P(distress >= 1)"

. graph twoway connected Phat date, sort

The coefficient given by logit ( .0020907) describes date's effect on the logit or log 
odds that any thermal distress incidents occur. Each additional day increases the predicted log 
odds of thermal distress by .0020907. Equivalently, we could say that each additional day 
multiplies predicted odds of thermal distress by e <’?20907 = 1.0020929; each 100 days therefore 
multiplies the odds by (e ■ 0 ) = 1.23. (e ~ 2.71828, the base number for natural
logarithms.) Stata can make these calculations utilizing the _b\yarname] coefficients stored 
after any estimation:

display exp(_b[datej)
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Using Logistic Regression

logistic any date

Logit estimates

Log likelihood = -12.9^1396
I

any P> I z | [95% Conf.z Interval]
1.0022 93 .0010725 1 . 95 0.051 .9999931 1.00419“

Is tat
Logistic model

-e 
Classified ! -D Total

1 +

Total 14 9

S5

I-
red -)

Correctly classified 73.91%

D
i

12
2

4 
c,

16
7

Pr ( + i 
Pr( -| 
Pr(~C| 
Pr( D|

Number of obs 
LR chi2(l) 
Prob > chi2 
Pseudo R2

23
4 . 81 

0.028? 
0.1561

! X "O

= £1

44.44%
14.29%
25.03%
28.57%

?r v
Pr •

Pr i

Sensitivity
Specificity
Positive predictive
Negative predictive

II
is

False + rate for
False -
False +
False -

I Odds Racio

date I

By default, Istat employs a probability of .5 as its cutoff (although we can change this 
by adding a cutoff ( ) option). Symbols in the classification table have the following 
meanings:

The event of interest did occur (that is,y = 1) for that observation. In this example, 
D indicates that thermal distress occurred.
The event of interest did not occur (that is, y = 0) for that observation. In this 
example, -D corresponds to flights having no thermal distress.

Here is the same regression seen earlier, but using logistic instead of logit:

true - 
rate for true I 
rate for classc 
rate for class:

Note the identical log likelihoods and x2 statistics. Instead ofcoefficients (6), logistic 
displays odds ratios (e'1). The numbers in the “Odds Ratio” column of the logistic output 
are amounts by which the odds favoring r = 1 are multiplied, with each 1 -unit increase in that 
x variable (if other x variables’ values stay the same).

After fitting a model, we can obtain a classification table and related statistics by typins

for any

Classified + if predicted Pr: 
True D defined as anv !=

Std. Err.
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- means a predicted

xb

Statistics obtained by the dbeta , dx2 , ddeviance , and hat options do notI

dbeta 
deviance 
dx2 
ddeviance 
hat 
number 
resid
rstandard

logit, the followup command predict calculates various 
Discussion of the diagnostic statistics can be found in

measure the influence of individual observations, as their counterparts in ordinary regression 
do. Rather, these statistics measure the influence of “covariate patterns”; that is, the 
consequences of dropping all observations with that particular combination ofx values.’ See 
Hosmer and Lemeshow (2000) for details. A later section of this chapter shows these statistics 
in use.

Does booster joint temperature also affect the probability of any distress incidents? We 
could investigate by including temp as a second predictor variable .

Predicted probability thaty = I
Linear prediction (predicted log odds that v = 1) 
Standard error of the linear prediction
A5 influence statistic, analogous to Cook’s D 
Deviance residual for jth x pattern, dj 
Change in Pearson %2, written as A^2 or Ax2p 
Change in deviance x2, written as AD or Ax2 D 
Leverage of the y'th x pattern, hj 
Assigns numbers to x patterns, j = 1,2,3 ... J 
Pearson residual forjth x pattern, rj 
Standardized Pearson residual

The model's predicted probability is greater than or equal to the cutoff point. 
Since we used the default cutoff, + here indicates that the model predicts a .5 or 
higher probability of thermal distress.
The predicted probability is less than the cutoff. Here, 
probability of thermal distress below .5.

Thus for 12 flights, classifications are accurate in the sense that the model estimated at least 
a .5 probability of thermal distress, and distress did in fact occur. For 5 other flights the model 
predicted less than a .5 probability, and distress did not occur. The overall ’“correctly 
dass^ed” rate is therefore 12 + 5= 17 out of 23, or 73.91%. The table also gives conditional 
probabilities such as "sensitivity” or the percentage of observations with P i .5 eiven that 
thermal distress occurred (12 out of 14 or 85.71%).

After logistic or 
prediction and diagnostic statistics. 
Hosmer and Lemeshow (2000). 
predict newvar 

predict newvar, 

predict newvar, stdp 

predict newvar, 

predict newvar, 

predict newvar, 

predict newvar, 

predict newvar, 

predict newvar, 

predict newvar, 

predict newvar,
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. logistic any date temp

Logit estimates

Log likelihood = 1.35 : "48

I Odds Ratioany Std. Err. P> I z Iz [95% Conf. Interval]

Istat

Classified | -D Total

+

Total 1 4 9 23

. 5

rate

Correctly classified 78.26%

. estimates store full

I
I

reduced model, including only a subset of the x variables from the full
> Irtest

False *
False -
False *
False -

12

2.17
-1 . 48

33.33% 
14.29% 
20.00%
25.00%

85.71%
66.67%
80.00%
75.00%

15
8

0.030
0.140

1.000293 
.6678848

1.005653
1.058561

23
8.09 

0.0175 
0.2627

ted -
ted -

3
6

Pr 
rr( D|

+ )
-)

ce - 
ce D 
= c c -

Number of obs 
LR chi2(2) 
Prob > chi2 
Pseudo R2

Pr( +| D) 
Pr( -HD) 
Pr( D| 
?r(-D|

.0013675

.0987887

Sensitivity
Specificity
Positive predictive
Negative predictive

1.00297
. 84083 2 9

Now estimate a i ' ' -
model. (Such reduced models are said to be “nested.”) Finally, a command such as

date |
temp |

J y

?r( +|-D)
Pr( -I D) 

+ ) 
-)

Classified + if predicted Pr-Di 
True D defined as any != 0

for classi

Logistic model for any

.According to the fitted model, each 1-degree increase in joint temperature multiplies the 
odds of booster joint damage by .84 (in other words, each 1-degree warming reduces the odds 
o damage by about 16%). Although this effect seems strong enough to cause concern, the 
asymptotic z test says that it is not statistically significant (z = -1.476, P = .140) A more 
definitive test, however, employs the likelihood-ratio %2. The Irtest’ command compares 
nested models estimated by maximum likelihood. First, estimate a “full” model containing all 
variables of interest, as done above with the logistic any date temp command. 
Next, type an estimates store command, giving a name (such as full) to identify this 
first model:

value
value

- . rue
D

The classification table indicates that including temperature as a predictor improved our 
correct classification rate to 78.26%.
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Conditional Effect Plots

I

I

I

I
I

likelihood-ratio test 
(Assumption: . nested in full)

This Irtest command tests the rec 
previously saved by estimates store . 
maximum-likelihood models,

X2 =-2(ln^, - lnSP0)
where In 0 is the log likelihood for the first model (with all x variables), and In a

LR chi2 (1) = 3.28
Prob > chi2 = 0.0701

icent (presumably nested) model against the model 
---- It employs a general test statistic for nested

full requests a test ofthe nested model against the previously stored/z/Z/ model. For example 
(using the quietly prefix, because we already saw this output once),
- quietly logistic any date
. Irtest full

Conditional effect plots help m understanding what a logistic model implies aboutprobabilities. 
The idea behind such plots is to draw a curve showing how the model’s prediction ofy changes 
as a function of one x variable, while holding all other x variables constant at chosen values 
such as their means, quartiles, or extremes. For example, we could find the predicted 
probability of any thermal distress incidents as a function of temp, holding date constant at its 
25th percentile. The 25th percentile of date, found by summarize date, detail is 
8569 — that is, June 18, 1983. ’
. quietly logit any date temp

■ generate LI = _b[_cons] + _b[date]*8569 + _b[temp]* temp
■ generate Phatl = 1/(1 + exp(-Ll))

. label variable Phatl "P(distress >= 1 | date = 8569)"
LI is the predicted logit, and Phatl equals the correspondingpredicted probability that distress 
a 1, calculated according to equation [10.5], Similar steps find the predicted probability of any 
distress with date fixed at its 75th percentile (9341, or July 29, 1985):

[10.6] 

likelihood for the second model (with a subset ofthosex variables). Compare the resulting test 
statistic to a distribution with degrees of freedom equal to the difference in complexity 
(number ofx variables dropped) between models 0 and 1. Type help Irtest formore 
about this command, which works with any of Stata’s maximum-likelihood estimation 
procedures (logit, mlogit, stcox, and many others). The overall X 2 statistic routinely 
given by logit or logistic output (equation [10.3]) is a special case of [10.6],

The previous Irtest example performed this calculation:
X2 =-2[-12.991096-(-11.350748)]

= 3.28
with 1 degree of freedom, yielding P = .0701; the effect of temp is significant at a = 10 
G>ven the small sample and fetal consequences of a Type II error, a = .10 seems a more prudent 
cutoff than the usual a = .05. H
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_b [ temp] ★temp

J

i  
1 Figure 10.2

8040 70

Diagnostic Statistics and Plots

I — June 1983
-- July 1985

I 
i!

r ■
1
COCO -

1
ri

L

50 60
Joint temperature, degrees F

Among earlier flights (date =8569, left curve), the probability of thermal distress goes from 
very low, at around 80c F, to near 1, below 50° F. Among later flights (date = 9341, right 
curve) however, the probability of any distress exceeds .5 even in warm weather, and climbs 
towaid 1 on flights below 70° F. Note that Challenger's launch temperature, 31° F, places it 
at top left in Figure 10.2. This analysis predicts almost certain booster joint damage.

°
30

As mentioned earlier, the logistic regression influence and diagnostic statistics obtained by 
predict refer not to individual observations, as do the OLS regression diagnostics of 
Chapter 7. Rather, logistic diagnostics refer to x patterns. With the space shuttle data, 
however, each x pattern is unique — no two flights share the same combination of date and

 

. generate L2 - _b[_cons] + _b[date]*9341 +
- generate Phat2 = 1/(1 + exp(-L2))
. label variable Phat2 "P(distress >= 1 | date = 9341)"
thetwolC/n|n0Lgraph thu relationshiP between ,emP and the probability of any distress, for 
he two levels Of date, as shown m Figure 10.2. Using median splines with many vertical bands 

(graph twoway mspline, bands (50)) produces smooth curves in this figure 
approximating the smooth logistic functions.
. graph twoway mspline Phatl temp, bands(50)

II mspline Phat2 temp, bands(50)’
II , ytitle("Probability of thermal distress") 
ylabel(0(.2)1, grid) xlabel(, grid) 

legend(label (1 "June 1983") label (2 "July 1985") 
rows(2) position(7) ring(0))
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"Change in Pearson chi-squared"

1

Figure 10.3o

1

I
o

0 .2 .8 1

I

I

II

•4 .6
Predicted probability

. predict dB, dbeta
(2 missing values generated)
. label variable dB "Influence"
. predict dD, ddeviance
(2 missing values generated)

label variable dD "Change in deviance"

Hosmer and Lemeshow (2000) suggest plots that help in reading these diagnostics. To 
graph change in Pearson versus probability of distress (Figure 10.3), type:
. graph twoway scatter dX2 Phat3

T5 CO 
S? ro

.±
O <D 

s 
OT 
ro 
0

o
U)

1
O 04

Two poorly fit x patterns, at upper right and left, stand out. We can identify these two 
flights (STS-2 and STS 51-A) if we include marker labels in the plot, as seen in Figure 10.4.

temp (naturally, because no two were launched the same day). Before using predict we 
quietly refit the recent model, to be sure that model is what we think:
. quietly logistic any date temp

. predict Phat3
(option p assumed; Pr(an'y))
. label variable Phat3 "Predicted probability"
. predict dX2, dx2
(2 missing values generated)

. label variable dX2
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■ graph twoway scatter dX2 Phat3f mla.be! (flight) mlabsize (small)

o Figure 10.4
• STS-2

I

• STS.51-A

• STS»£TS-3o
P61-C

0 .8 T.2

list flight any date temp dX2 Phat3 if dX2 > 5

flight dateany temp dX2i

1« 9.630337
I

0 5.899742

thermal distress, despite a late launch date and cool

r.
0

2 .
4 .

14 .
25.

+ -- 
I
I --
I
I
I
I STS 51-L

STS-2
STS-4

STS 51-A

7986
8213
9078
9524

70
80
67
31

• STS_51-J

-^?8STS-41-G

— o co 
<6 □

O CD
c o w
ro 
<D

.£
CD 
CD 
C 
GJ 

5-

4. .6
Predicted probability

Phat3 | -------- I 
.1091805 | 
.0407113 | 
.8400974 | 
.9999012 |

Flight STS 51-A experienced no 1* 
tempcmure (see Figure 10.2). The model predicts a .84 probability of distress for this flight* 
A l points along the up-to-right curve in Figure 10.4 have any = 0, meaning no thermal distress.

top the up-to-left (any- 1) curve, flight STS-2 experienced thermal distress despite being one 
° leSt and launched in slightly milder weather. The model predicts only a . 109 
probability of distress. (Because Stata considers missing values as “high” numbers, it lists the 
two missing-values flights, including Challenger, among those with dX2 > 5.)

Similar findings result fromplotting<7£> versus predicted probability, as seen in Figure 10.5. 
Again, flights STS-2 (top left) and STS 51-A (top right) stand out as poorly fit. Figure 10.5 
i ustrates a variation on the labeled-marker scatterplot. Instead of putting the flight-number 
labels near the markers, as done earlier in Figure 10.4, we make the markers themselves 
invisible and place labels where the markers would have been in Figure 10.5.
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Figure 10.5STS-2
io

STS_51-A

STS_51-J

o
0 .2 .8

I
. graph twoway scatter dD Phat3 [aweight = dB]I , msymbol(oh)

Figure 10.6

I

I 0
£ o <£>

°oO
Q,o

oO

0 .2 .8 1

STS-3
STS-1

. graph twoway scatter dD Phat3, msymbol(i) mlabposition (0) 
mlabel(flight) mlabsize(small)

STS 51-F
STS^S-9

STS_41-G

~STS 61-C

1

.4 .6
Predicted probability

o 
c

■u 
.£
<D 
O)

O

o
S

.£
<D 
05
ro ™
JZ
O

.4 .6
Predicted probability

dB measures an x pattern’s influence in logistic regression, as Cook’s D measures an 
individual observation’s influence in OLS. For a logistic-regression analogue to the OLS 
diagnostic plot in Figure 7.7, we can make the plotting symbols proportional to influence as 

one in Figure 10.6. Figure 10.6 reveals that the two worst-fit observations are also the most 
influential.

i \
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Logistic Regression with Ordered-Category y

i

Ordered logit estimates

Log likelihood = -18.79706

distress | Coef. Std. Err. P>|z|z

(Ancillary parameters)

1

I

16.42813
18.12227

0.009
0.038

. 0008043
- .336929

.003286
-.1733752

Number of obs 
LR chi2(2) 
Prob > chi2 
Pseudo R2

.0312662

.0=34473

j

2.60
-2.08 -.0098215

• I

2 3
12.32 

0.0021 
0.2468

. J

1

rIn

---------- +
date | 
temp | 
------- + .
cutl | 
cut2 |

m t and lnfluentlal observat>ons deserve special attention because they both
contradict the main pattern of the data and pull model estimates in their contrary direction Of 
course, simply removing such outliers allows a “better fit” with the remaining data — but this 
is circular reasoning. A more thoughtfill reaction would be to investigate what makes the 
outliers unusual. Why did shuttle flight STS-2, but not STS 51-A, experience booster joint 
damage? Seeking an answer might lead investigators to previously overlooked variables or to 
otherwise respecify the model.

9.554813
9."22293

logit and logistic require {0,1} dependent variables.
is designed for ordinal variables like distress that have more than two categories, 
numerical codes representing these categories do not matter, so long as higher numerical values 
mean more” of whatever is being measured. Recall that distress has categories 0 = “none.” 
1 1 or 2,” and 2 - “3 plus” incidents of booster-joint distress.

Ordered logistic regression indicates that date and temp both affect distress, with the same 
signs (positive for date, negative for temp) seen in our earlier analyses:
. ologit distress date temp, nolog

Likelihood-ratio tests are more accurate than the asymptotic z tests shown. First, have 
estimates store preserve in memory the results from the full model (with two 
predictors) just estimated. Arbitrarily, we can name this model A.

[95% Conf. Inter’.-

logit and logistic fit only models that have two-category {0,!}y variables. We need 
other methods for models in which v takes on more than two categories. For example, 
ologit Ordered logistic regression, where vis an ordinal (ordered-category) variable. The 

numerical values representing the categories do not matter, except that higher 
numbers mean “more. For example, the y categories might be {1 = “poor ” 2 = 
“fair,” 3 = “excellent”}.

mlogit Multinomial logistic regression, where y has multiple but unordered categories 
such as {1 — Democrat.” 2 = “Republican,” 3 = “undeclared”}.

If j is {0,1}, logit (oi logistic), ologit, and mlogit all produce essentially 
the same estimates.
_ We earlier simplified the three-category ordinal variable distress into a dichotomy, any. 

ologit, on the other hand,
The
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— meaning

I

I
I

LR chi2(l) =
Prob > chi2 =

LR chi2(1) =
Prob > chi2 =

6.12
0.0133

10.. 33
0.0013

Logistic Regression

as a linear function of date and temp:

The Irtest output notes its assumption that model B is nested in model A 
that the parameters estimated in B are a subset of those in A, and that both models are estimated 
rom the same pool of observations (which can be tricky when the data contain missins values) 

This likelihood-ratio test indicates that B’s fit is significantly poorer. Because the presence of 
temp as a predictor in model A is the only difference, the likelihood-ratio test thus informs us 
that/ewp’s contribution is significant. Similar steps find that date also has a significant effect. 
. quietly ologit distress temp

estimates store C

. Irtest C A

likelihood-ratio test 
(Assumption: C nested ir. A)

. estimates store A

Next, fit a simpler model without temp, store its results as model B, and ask for a likelihood­
ratio test of whether the fit of reduced model B differs significantly from that of the full model 
model A:
. quietly ologit distress date

estimates store B

. Irtest B A

likelihood-ratio test 
(Assumption: B nested ir. A)

= P(S+u < _cutl) = P(S+u < 16.42813)

= PCcutl <S+u s _cut2) = P(16.42813 <S+u < 18.12227)

= P(_cut2 <S+u) = P( 18.12227 <S+u)

predict calculates predicted probabilities for each category of the

The estimates store and Irtest commands provide flexible tools for comparing 
nested maximum-likelihood models. Type help Irtest and help estimates for 
details, including more advanced options.

The ordered-logit model estimates a score, S,

•S' = .003286dure - . 1733752/emp
Predicted probabilities depend on the value of S, plus a logistically distributed disturbance u 
relative to the estimated cut points:
P(distress=“none")

P^distress-' 1 or 2”)

P(distress-‘3 plus”)

After ologit, 
dependent variable. We supply predict with names for these probabilities. Fo* example' 
none could denote the probability of no distress incidents (first category of distress)- onetwo 
the probability of 1 or 2 incidents (second category of distress)- and threeplus the probability 
of 3 or more incidents (third and last category of distress)-.
. quietly ologit distress date temp
• predict none onetwo threeplus
(option p assumed; predicted probabilities)

This creates three new variables:
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onetwo threeplus

variable label

25

flight none cr.etwo

25. . 0000754 . 00:3 34 6

Multinomial Logistic Regression

(99.9% of me.-.cry free)

variable label
migrate
kot z

vars :
size:

none 
onetwo 
threeplus

storage 
type

3
2,590

byte 
float 
byte

s torage 
type

float
float
float

%8.0g 
%9.0g 
%8.0g

display 
format

%9.0g
%9.0g
%9.0g

display 
format

value 
label

Expect to live most of life?
Social ties to community scale 
Live in Kotzebue or smaller 
village?

Pr (distress
Pr(distress
Pr(distress

0)
1)
2)

life 
ties 
kot z

value 
label

NW Arctic high school students 
(Hamilton & Seyfrit 1993)

20 Jul 2005 10:40

Contains data from C:\data\NWarctic.dta 
obs: 259

+ 
II
I STS 51-L

threep~s |-------- I
.99959 |

See Long (1997) or Hosmer and Lemeshow (2000) for more on ordered logistic regression 
and related techniques. The Base Reference Manual explains Stata’s implementation.

Variable life indicates where students say they expect to live most of the rest of their lives: 
in the same region (Northwest Arctic), elsewhere in Alaska, or outside of Alaska:
. tabulate life, plot

F

Our model, based on the analysis of 23 pre-Challenger shuttle flights, predicts little chance (P 
= .000075) of Challenger experiencing no booster joint damage, a scarcely ereater likelihood 
of one or two incidents (P = .0003), but virtual certainty (P = .9996) of three or more damage 
incidents.

When the dependent variable’s categories have no natural ordering, we resort to multinomial 
logistic regression, also called polytomous logistic regression. The mlogi t command makes 
this straightforward. If y has only bvo categories, mlogi t fits the same model as 
logistic. Otherwise, though, an mlogit model is more complex. This section presents 
an extended example interpreting mlogit results, using data (NWarctic.dta} from a suney 
of high school students in Alaska’s Northwest Arctic borough (Hamilton and Seyfrit 1993).'

variable name

. describe none

Predicted probabilities for Challenger's last flight, the 25th in these data, are unsettling: 
. list flight none onetwo threeplus if flight

variable name
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Freq.

259

they are, and lean more towards leaving the state:
tabulate life kotz, chi2

Total

166 259

Pearson chi2(2) = 46.2992

rrr

life RRR P> i z | [95% Conf. Interval]z

2.205882 .7304664 2.39 0.017 1.152687 4.221369

1 4 . 4385 6.307555 6.11 0.000 6.132946 33.99188
(Outcome life

J

259
46.23 

0.0000 
0.0863

75
80
11

II

Expect to ! 
live most I 
of life? |

Number of obs 
LR chi2(2) 
Prob > chi2 
Pseudo R2

92
120
47

same I 
other AK | 
leave AK I

92 l
120- |
47 |

other AK
kotz

Multinomial logistic regression

17 j
40 I
36 |

Total 1

Total I

mlogit can replicate this simple analysis (although its likelihood-ratio chi-squared need 
not exactly equal the Pearson chi-squared found by tabulate ):
. mlogit life kotz, nolog base(l)

leave AK |
kotz |

Kotzebue (population near 3.000) is the Northwest Arctic’s regional hub and largest city. 
More than a third of these students live in Kotzebue. The rest live in smaller villages of 200 
to 700 people. The relatively cosmopolitan Kotzebue students less often expect to stay where

base (1) specifies that category 1 ofy (life = “same”) is the base category for comparison. 
The rrr option instructs mlogit to show relative risk ratios, which resemble the odds 
ratios given by logistic .

Referring back to the tabulate output, we can calculate that among Kotzebue students 
the odds favoring “leave Alaska” over “stay in the same area” are

/’(leave AK) //’(same) = (36/93) / (17/93)
= 2.1176471

93

Live in Kotzebue or 
smaller village? 
village Kotzebue I

Expect to I 
live most I 
of life? 1 --------- + 

same • 
other AK | 
leave AK I

Std. Err.

same is the comparison group)

Pr = 0.000

Leg likelihood = -244.64465
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14.4385 times higher for Kotzebue

X

social ties to family and

rrr

Multinomial logistic regression

Log likelihood = -221.77969

I
RRR P> i z iz [95% Conf Interval]

0.0 0 0

7

(Outcome life rc -z

il

7.146 = 24
. 059??5

5.60 
-5.72

2.25
-4 .41

5.778907
.1392531

4.337193 
. 6654 4 92

38.13955
.38075

259
91.96 

0.0000 
0.1717

14.64604
.230262

which predicted odds favoringy=j(compared with y = base) 
inxx.,c'’ * ‘

that, if all

Number of obs 
LR chi2(4) 
Prob > chi2 
Pseudo R2

1.117483 
.3465911

.7724996

.07991=4

1 

0.000
0.000

life |

leave AK | 
kotz | 
ties |

2.214184 
.4=12466

III

ABymptotiez tests here indicate that the four relative risk ratios, describing two* variables’ 
e ects, all differ significantly from 1.0. Ifay variablehas/categories, then mlogit models 
the effects of each predictor (x) variable with J- 1 relative risk ratios or coefficients, and hence 
also employs J- I ztests—evaluatingtwoormore separate null hypotheses for each predictor.

1 'elihood-ratio tests evaluate the overall effect of each predictor. First, store the results from 
the rull model, here given the name full:
. estimates store full

Std. Err.

no ties

other AK | 
kotz | 
ties |

Among other students the odds favoring “leave Alaska” over “same area” are
/’(leave AK) / /’(same) =(11/166)/ (75/166)

= .1466667
Thus, the odds favoring “leave Alaska" oxer “same area" are 
students than for others:

2.1176471 / .1466667 = 14.4385
mlogittlPller 3 ratl° °f tW° °ddS’ eqUa,S the reIative risk rat>o (14.4385) displayed by

■ •J2finJT.ILtheir,el^1Ve nSk rati.° f°r categ°ryy °Os and predictor.rt, equals the amount by 
. .. -----) are multiplied, per 1 -unit increase

other things bemg equal. In other words, the relative risk ratio rrr/t is a multiplier such 
—1 a variables except a\. stay the same,

^=7 I^a) _ P(y =j\xk + \) 

piv = base | x,) = base | xk +1)

ties is a continuous scale indicating the strength of students’ 
community. We include ties as a second predictor:
. mlogit life kotz ties, nolog base(l)

Then fit a simpler model with one of the.r variables omitted, and perform a likelihood-ratio test 
For example, to test the effect of ties, we repeat the regression with ties omitted: 
. quietly mlogit life kotz 

estimates store 

Irtest no__ties full
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I

I

/

I

39.05
0.0000

45.73
0.0000

LR chi2 (2) =
Prob > chi2 =

LR chi2 (2)
Prob > chi2 =

likelihood-ratio test 
(Assumption: no_ties nested in full)

likelihood-ratio test 
(Assumption: no_kotz nested in full)

The effect of ties is clearly significant. Next, we run a similar test on the effect of kotz: 
. quietly mlogit life ties 

. estimates store no_kotz 

. Irtest no kotz full

or simply drop all observations having missing values before proceeding:
. drop if life >= . | kotz >= . | ties >=

Dataset NSVarctic.dta has already been screened in this fashion to drop observations with 
missing values.

Both kotz and ties significantly predict life. What else can we say from this output'’ To 
interpret specific effects, recall that life = “same” is the base category. The relative risk ratios 
tell us that:

Odds that a student expects migration to elsewhere in Alaska rather than staying in the 
same area are 2.21 times greater (increase about 121 %) among Kotzebue students (kotz=\), 
adjusting for social ties to community.
Odds that a student expects to leave Alaska rather than stay in the same area are 14.85 
times greater (increase about 1385%) among Kotzebue students (kotz=\), adjusting for 
social ties to community.
Odds that a student expects migration to elsewhere in Alaska rather than staying are 
multiplied by .48 (decrease about 52%) with each 1-unit (since ties is standardized, its units 
equal standard deviations) increase in social ties, controlling for Kotzebue/village 
residence.

If our data contained missing values, the three mlogit commands just shown might have 
analyzed three overlapping subsets of observations. The full model would use only 
observations with nonmissing life, kotz, and ties values; the <tote-only model would bring back 
in any observations missing just their ties values; and the hes-only model would bring back 
observations missing just kotz values. When this happens, Stata returns an error messages 
saying “obsen ations differ.” In such cases, the likelihood-ratio test would be invalid. Analysts 
must either screen observations with if qualifiers attached to modeling commands, such as
. mlogit life kotz ties, nolog base(l) rrr
. estimates store full

. quietly mlogit life kotz if ties < .

. estimates store no__ties

. Irtest no^ties full

. quietly mlogit life ties if kotz < .
. estimates store no^kotz
. Irtest no kotz full
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. quietly mlogit life kotz ties

-y)

label variable PleaveAK "P(life = 3 | kotz , ties)"

table life, contents(mean PleaveAK) row

life?

.1814672

i

model implies regarding continuous
'■ i

. mlogit life kotz ties, nolog base(l)

Multinomial logistic regression

likelihood = -221.77969_cg

Coef. Std. P> I z I [95% Conf.z Interval]

(Outcome life-=same is the. comparison groupj_

Tabulating predicted probabilities for each value of the dependent variable shows how the 
model fits:

2.28
-4 . 41

1 . 19

I
I
I
I

2.697733
-1.468537
-2.115025

.3486=68 

.1664104

. 1726153

0.000
0.000
0.000

0.023
0.000 
0.232

1.754215
-1.971462
-2.851611

.1110784
-1.05961

-.1322902

3.641252 
-.9656124 
-1.378439

1 .47869
-.407293
. 5450942

259
91.96 

0.0000 
0.1717

.794884
-.7334513

.206402

.0811267

.1770225

.3892264

Number of obs 
LR chi2(4) 
Prob > chi2 
Pseudo R2

.4813959

.2565991

. 3756163

same i 
ether AK i 
leave AK |

I
I
I
I 
+

5.60 
-5.72 
-5.63

leave AK
kotz 
ties 
cons

other AK
kotz 
ties 
cons

Expect to I 
live most I 
of life? | mean(PleaveAK)

predict can calculate predicted probabilities from mlogit. The outcome (#) 
option specifies for which v category we want probabilities. For example, to get predicted 
probabilities that life = “leave AK” (category 3),

A minority of these students (47/259 = 18%) expect to leave Alaska. The model averages only 
a .39 probability of leaving Alaska even for those who actually chose this response — reflecting 
the fact that although our predictors have significant effects, most variation in migration plans 
remains unexplained.

Conditional effect plots help to visualize what a model implies regarding continuous 
predictors. We can draw them using estimated coefficients (not risk ratios) to calculate 
probabilities:

life I

Total I

. predict PleaveAK, outcome(3) 
(cpticr. p assumed; predicted prerabi

Odds that a student expects to leave Alaska rather than staying are multiplied by .23 
(decrease about 77%) with each 1-unit increase in social ties, controlling for 
Kotzebue/village residence.
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village students. LSkotz is the predicted logit of life = 3 (leave Alaska) for Kotzebue students,
and so forth:

I

I

next calculate the predicted probabilities:we

. generate L2v =
. generate L2k =
. generate L3v =
. generate L3k =

[ 2] b[_cons]
[2] _b[_cons]
[3] b[_cons] 
[3] b[_cons]

. generate L2villag = .206402 +.794884*0 7334513*ties

. generate L2kotz = .206402 +.794884*1 7334513*ties

. generate L3villag = -2.115025 +2.697733*0 -1.468537*ties

. generate L3kotz = -2.115025 +2.697733*1 -1.468537*ties

The following commands calculate predicted logits, and then the probabilities needed for 
conditional effect plots. L2villag represents the predicted logit of life = 2 (other Alaska) for

Like other Stata modeling commands, mlogit saves coefficient estimates as macros. 
For example, [2]_b[kotz] refers to the coefficient on kotz in the model’s second (life = 2) 
equation. Therefore, we could have generated the same predicted logits as follows. L2v will
be identical to L2villag defined earlier, L3k the same as L3kotz, and so forth:

+ [2]_b[kotz]*0 +[2]_b[ties]* ties 

+[2]_b[kotz]*1 +[2]_b[ties]*ties 

+ [3]_b[kotz]*0 + [3]_b[ties]* ties 

+ [3]_b[kotz]*1 + [3]_b[ties]* ties

From either set of logits,
. generate Plvillag = 1/(1 +exp(L2villag) +exp(L3villag) )
. label variable Plvillag "same area"
. generate P2villag = exp (L2villag) / (1+exp (L2villag) +exp (L3villag) )
. label variable P2villag "other Alaska"
. generate P3villag = exp (L3villag) / (1+exp (L2villag) +exp (L3villag) )
. label variable P3villag "leave Alaska"
. generate Plkotz = 1/(1 +exp(L2kotz) +exp(L3kotz)) 
label variable Plkotz "same area"

. generate P2kotz = exp(L2kotz)/(1 +exp(L2kotz) +exp(L3kotz))

. label variable P2kotz "other Alaska"

. generate P3kotz = exp(L3kotz)/(1 +exp(L2kotz) +exp(L3kotz))

. label variable P3kotz "leave Alaska"



286 Statistics with Stata

i

Figure 10.7

co

-2 2 3

-- elsewhere Alaska
■ ••• leave Alaska
— same area

bands(50) 
mspline P2villag ties, bands(50) 
mspline PSvillag ties, bands(50) 
, xlabel(-3(1)3) ylabel(0(.2) 1) yline(0 1) 

ring(0) label(l

-1. 0 1
Social ties to community scale

r
1.

xline(0)
... "same area")

elsewhere Alaska") label(3 "leave Alaska") cols(l))
ytitle("Probability")

Figures 10.7 and 10.8 show conditional effect plots for village and Kotzebue students 
separately.

. graph twoway mspline Plvillag ties, 
II 
I I 
II 
legend(order(2 3 1) position(12) 
label (2

o —
-3
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ytitle("Probability”)

Figure 10.8

-3 -2 2 3

!

I

I

.... leave Alaska
-- elsewhere Alaska 

same area

-1 0 1
Social ties to community scale

i f

1) xline(0)
"same area") 

) cols (1))

I I I I I I 
legend(order(3 2 1) position(12) 
label (2 "elsewhere Alaska") label (3 "leave Alaska")^

The plots indicate that among village students, social ties increase the probability of staying 
rather than moving elsewhere in Alaska. Relatively few village students expect to leave Alaska. 
In contrast, among Kotzebue students, he.v particularly affects the probability of leaving Alaska, 
rather than simply moving elsewhere in the state. Only if they feel very strong social ties do 
Kotzebue students tend to favor staying put.

. graph twoway mspline Plkotz ties, bands(50) 
mspline P2kotz ties, bands(50) 
mspline P3kotz ties, bands(50) 
, xlabel (-3(1)3) ylabel (0(.2)1) yline(0 

ring(0) label (1
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This chapter presents methods for analyzing event Survival analysis encompasses several
related techniques that focus on times until the event of interest occurs. Although the event 
could be good or bad, by convention we refer to that event as a “failure.” The time until failure 
is survival time.” Survival analysis is important in biomedical research, but it can be applied 
equally well to other fields from engineering to social science — for example, in modeling the 
time until an unemployed person gets a job, or a single person gets married. Stata offers a full 
range of survival analysis procedures, only a few of which are illustrated in this chapter.

We also look briefly at Poisson regression and its relatives. These methods focus not on 
survival times but, rather, on the rates or counts of events over a specified interval of time. 
Event-count methods include Poisson regression and negative binomial regression. Such 
models can be fit either through specialized commands, or through the broader approach of 
generalized linear modeling (GLM).

Consult the Survival Analsysis and Epidemiological Tables Reference Manual for more 
m ormation about Stata’s capabilities. Type help st to see an online overview. Selvin 
(1995) provides well-illustrated introductions to survival analysis and Poisson regression I 
have borrowed (with permission) several of his examples. Other good introductions to survival 
analysis include the Stata-oriented volume by Cleves, Gould and Gutierrez (2004), a chapter 
in Rosner (1995), and comprehensive treatments by Hosmer and Lemeshow (1999) and Lee 
(1992). McCullagh and Nelder (1989) describe generalized linear models. Long (1997) has 
a chapter on regression models for count data (including Poisson and negative binomial), and 
also has some material on generalized linear models. An extensive and current treatment of 
generalized linear models is found in Hardin and Hilbe (2001).

Stata menu groups most relevant to this chapter include:
Statistics — Survival analysis
Graphics - Survival analysis graphs
Statistics - Count outcomes
Statistics - Generalized linear models (GLM)

Regarding epidemiological tables, not covered in this chapter, further information can be 
round by typing help epi tab or exploring the menus for

Statistics - Observational/Epi. analysis.
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Example Commands

I

I

I

4

IWI
Most of Stata’s survival-analysis (st* ) commands require that the data have previously been 
identified as survival-time by issuing an stset command (see following), stset need 
only be run once, and the data subsequently saved.
. stset timevar, failure(failvar)

Identifies single-record survival-time data. Variable timevar indicates the time elapsed 
before either a particular event (called a “failure”) occurred, or the period of observation 
ended (“censoring”). Variable/az/vw indicates whether a failure (failvar= 1) or censoring 
(failvar = 0) occurred at timevar. The dataset contains only one record per individual. The 
dataset must be stset before any further st* commands will work. If we 
subsequently save the dataset, however, the stset definitions are saved as well, 
stset creates new variables named_^t,_d,_t, andjO that encode information necessary 
for subsequent st* commands.

. stset timevar, failure(failvar) id(patient) enter(time start) 
Identifies multiple-record survival-time data. In this example, the variable timevar 
indicates elapsed time before failure or censoringj/m/var indicates whether failure (1) or 
censoring (0) occurred at this time, patient is an identification number. The same 
individual might contribute more than one record to the data, but always has the same 
identification number, start records the time when each individual came under observation.

stdes

Describes survival-time data, listing definitions set by stset and other characteristics 
of the data.

. stsum

Obtains summary statistics: the total time at risk, incidence rate, number of subjects, and 
percentiles of survival time.

. ctset time nfail ncensor nenter, by(ethnic sex)
Identifies count-time data. In this example, the variable time is a measure of time; nfail is 
the number of failures occurring at time. We also specified ncensor (number of censored 
observations at time) and nenter (number entering at time), although these can be optional. 
ethnic and sex are other categorical variables defining observations in these data.

. cttost
Converts count-time data, previously identified by a ctset command, into survival-time 
form that can be analyzed by st* commands.

sts graph
Graphs the Kaplan-Meier survivor function. To visually compare two or more survivor 
functions, such as one for each value of the categorical variable sex, use the by () option, 
. sts graph, by(sex)

To adjust, through Cox regression, for the effects of a continuous independent variable such 
as age, use the adjustforf) option, 
. sts graph, by(sex) adjustfor(age)

Note, the by() and adjustfor() options work similarly with the other sts 
commands sts list, sts generate , and sts test.
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J

I

j

x Ito ^Apunciiudi-uisinouiion model regression ot time-to-failure on continuous or dummy 
predictors xl-x4. Obtains heteroskedasticity-robust standard error estimates. In addition 
to Weibull and exponential, other dist() specifications for streg include lognormal, 
log-logistic, Gompertz, or generalized gamma distributions. Type help streg for 
more information. '

. stcurve, survival
After streg , plots the survival function from this model at mean values of all the v 
variables.

. stcurve, cumhaz at(x3=50, x4=0)
After streg, plots the cumulative hazard function from this model at mean values of.v/ 
and x2f x3 set at 50, and x4 set at 0.

. poisson count xl x2 x3, irr exposure(x4)
Performs Poisson regression of event-count variable count (assumed to follow a Poisson 
distribution) on continuous or dummy independent variablesxl-x3. Independent-variable 
effects will be reported as incidence rate ratios ( irr ). The exposure () option 
identifies a variable indicating the amount of exposure, if this is not the same for all 
observations. . 

. sts list

Lists the estimated Kaplan—Meier survivor (failure) function.
. sts test sex

Tests the equality of the Kaplan-Meier survivor function across categories of se.v.
sts generate survfunc = S

Creates a new variable arbitrarily namedsurvfunc, containing the estimated Kaplan-Meier 
survivor function.

. stcox xl x2 x3
Fits a Cox proportional hazard model, regressing time to failure on continuous or dummv 
variable predictors xl-x3.

. stcox xl x2 x3, strata(x4) basechazard(hazard) robust
Fits a Cox proportional hazard model, stratified by x4. Stores the group-specific baseline 
cumulative hazard function as a new variable named hazard. (Baseline survivor function 
estimates could be obtained through a basesur (survive) option.) Obtains robust 
standard error estimates. See Chapter 9 or, for a more complete explanation of robust 
standard errors, consult the User’s Guide.

stphplot, by(sex)
Plots -ln(-ln(survival)) versus ln(analysis time) for each level of the categorical variable 
sex, from the previous stcox model. Roughly parallel curves support the Cox model 
assumption that the hazard ratio does not change with time. Other checks on the Cox 
assumptions are performed by the commands s tcoxkm (compares Cox predicted curves 
with Kaplan-Meier observed survival curves) and stphtest (performs test based on 
Schoenfeld residuals). See help stcox for syntax and options.

. streg xl x2, dist(weibull)
Fits Weibull-distribution model regression of time-to-failure on continuous or dummv 
variable predictors xl and x2.

. streg xl x2 x3 x4, dist(exponential) robust
Fits exponential-distribution model regression of time-to-failure
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Survival-Time Data 

(aids.raw) that looks like this:

51 29

The first column values are case numbers (1,2,3,..., 51). The second column tells how many

case

I
I

case

time

34
42

1
2

1 1

37 0
(rows 4-50 omitted)

81 0

"Case ID number"
"Months since HIV diagnosis"
"Developed AIDS symptoms" 

age "Age in years"

.raw, clear

months elapsed after the diagnosis, before that person either developed symptoms of AIDS or 
the study ended (1, 17, 37,...). The third column holds a 1 if the individual developed AIDS 
symptoms (failure), or a 0 if no symptoms had appeared by the end of the study (censoring). 
The last column reports the individual’s age at the time of diagnosis.

We can read the raw data into memory using infile , then label the variables and data 
and save in Stata format as file aidsl.dta:
• infile case time aids age using aids 
(51 observations read)

label variable
. label variable
. label variable aids

. label variable

Survival-time data contain, at a minimum, one variable measuring how much time elapsed 
before a certain event occurred to each observation. The literature often tenns this event of 
interest a “failure,” regardless of its substantive meaning. When failure has not occurred to an 
observation by the time data collection ends, that obsenation is said to be “censored.” The 
stset command sets up a dataset for survival-time analysis by identifying which variable 
measures time and (if necessary) which variable is a dummy indicating whether the observation 
failed or was censored. The dataset can also contain any number of other measurement or 
categorical variables, and individuals (for example, medical patients) can be represented by 
more than one observation.

To illustrate the use of stset, we will begin with an example from Selvin (1995:453) 
concerning 51 individuals diagnosed with HIV. The data initially reside in a raw-data file

Note: A Poisson model assumes that the event probability remains constant, regardless of 
how many times an event occurs for each observation. If the probability does not remain 
constant, we should consider using nbreg (negative binomial regression) or gnbreg 
(generalized negative binomial regression) instead.

glm count xl x2 x3, link(log) family(poisson) lnoffset(x4) eform 
Performs the same regression specified in the poisson example above, but as a 
generalized linear model (GLM). glm can fit Poisson, negative binomial, logit’ and many 
other types of models, depending on what link() (link function) and family () 
(distribution family) options we employ..
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v: label data "AIDS (Selvin 1995:453)"

i i

3;

J

I

stdes yields a brief description of how our survival-time data are structured. In this 
simple example we have only one record per subject, so some of this information is unneeded.

51
51
25

3164

was
was
was

51
0

Lotal obs. 
exclusions

0
0

97. save, replace
file c:\data\aidsl.dta saved

save aidsl
file c:\data\aidsl.dt~ saved

■I

i'

I

cbs. remaining, representing
subj ects
failures in single failure-per-subject data
total analysis time at risk, at risk from t =

earliest observed entry t = 
last observed exit t =

r

compress
float now byte 
float now byte 
float now byte 

now byteII

case
aids != 0 & aids < 
(time[_n-l], time] 
failure

case
time
aids 
age was float

id: 
failure event: 

obs. time interval: 
exit on or before:

The next step is to identify which variable measures time and which indicates failure/ 
censoring. Although not necessary with these single-record data, we can also note which 
variable holds individual case identification numbers. In an stset command, the first- 
named variable measures time. Subsequently, we identify with failure () the dummy 
representing whether an observation failed (1) or was censored (0). After using stset, we 
save the data again to preserve this infonnation.
. stset time, fallure(aids) id(case)



Survival and Event-Count Models 293

d = 1 5s

ase

Category total mean

1 1 1 1

62.03922 1 67 97

failures 25 .4901961 0 0 1

total 3164 .0079014 51 41 81

stsum, by(sex)

I Count-Time Data

l

— i
75%

--I 
max

female), we could obtain summary statistics 
command of the following form:

(first) entry time
(final) exit time

failure
analysis time

of subjects
of records

0
0

3164

51
51

0
62.03922

per subject -------
min median

0 
1

0
67

0
97

no.
no.

incidence
rate

I
I time at risk

_d:
_t: 
id:

aids 
time 
case

If the data happen to include a grouping or categorical variable such as sex (0 = male, 1 = 
; on survival time separately for each group by a

-- Survival time 
25% 50%

no. of 
subjects

subjects with gap 
time on gap if gap 
time at risk

Survival-time (st) datasets like aidsl .dta contain information on individual people or things, 
with variables indicating the time at which failure or censoring occurred for each individual. 
A different type of dataset called count-time ( ct) contains aggregate data, with variables 
counting the number of individuals that failed or were censored at time t. For example, 
diskdriv.dta contains hypothetical test information on 25 disk drives. All but 5 drives failed 
before testing ended at 1,200 hours. -----------------

Later sections describe more formal methods for comparing survival times from two or more 
groups.

The stsum command obtains summary statistics. We have 25 failures out of 3,164 
person-months, giving an incidence rate of 25/3164 = .0079014. The percentiles of survival 
time derive from a Kaplan-Meier survivor function (next section). This function estimates 
about a 25% chance of developing AIDS within 41 months after diagnosis, and 50% within 81 
months. Over the observed range of the data (up to 97 months) the probability of AIDS does 
not reach 75%, so there is no 75th percentile given.

stsum

s tdes
failure 

analysis time
id
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dta

($9.9% cf rr.e-cry free) 

variable name variable label

Sorted by:

list

failures censored

6 . 1200 0

. ctset hours failures censored

dataset
I

(meaning all enter at time 0)

cttost

(data are st;

= C i failures < .

j /

6
25
20

19400

6
0

total obs. 
exclusions

Contains data 
obs : 

vars : 
size :

storage 
type

*2.0g
*?.0g
* 9.0g

0
0

1200

200
400
600
800

1000

from C:'.dataXdiskdr
6
3

48

display 
f ormat

int 
byte 
byte

name :
time :
fail: 
lost: 

enter:

no.
no.
no.

hours 
failures 
censored

failures ! 
(0, hours] 
failure 
[fweight=w

value 
label

w
I

8
3

1 .
2 .
3 .
4 .
5 .

C:\data\diskdriv.dta 
hours 
failures 
censored

Hours of continuous operation 
Number cf failures observed 
Number still working

Count-time data on disk drives 
21 Jul 2005 09:34

physical obs. remaining, equal to
weighted obs., representing
failures in single record/single failure data 
total analysis time at risk, at risk from t = 

earliest observed entry t = 
last observed exit t =

I hours
I
I
I
I
I
I
I
I 

+ 

To set up a count-time dataset, we specify the time variable, the number-of-failures 
variable, and the number-censored variable, in that order. After ctset , the cttost 
command automatically converts our count-time data to survival-time format.

failure event: 
obs. time interval: 
exit on or before: 

weight:
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list

failures dstw t

6 . 1 3 1 1 1000

s tdes

Category
min max

1 1 1 1

700 200 700 1200
failures 5 .8333333 0 1 1

75*

19400 .0010309 25 600 800 1000

I
Kaplan—Meier Survivor Functions

i
I time at risk

The cttost 
dataset, j ' 
analysis, so the data now are viewed 
the previous 6 (six time periods).
- stsum

no.
no.

(first) entry time
(final) exit time

of subjects
of records

1200
200
400 
600 
800

hours 
failures 
[fweight=w]

failures 
hours
[ fweight=w]

0
1 •
1
1

unweighted 
total

5
2
3
4
8

0
0

4200

6
6

1
1
1
1
1

0
1
1
1
1

0
700

1200
200
400
600
800

0
200

Survival zime 
50*

0
1200

1

failure time: 
failure/censor: 

weight:

1.
2 .
3.
4 .
5 .

failure
analysis time

weight:

incidence 
rate

0
700

I---
25%

per subject -----
unweighted 
median

d:
t:

no. of 
subjects

I----------
unweighted 

mean

total |

subjects with gap 
time on gap if gap 
time at risk

Let n, represent the number of observations that have not failed, and are not censored, at the 
beginning of time period t. d, represents the number of failures that occur to these observations 
unng time period t. The Kaplan-Meier estimator of surviving beyond time t is the product of 

survival probabilities in t and the preceding periods:

—+ 
to | 
---(

0 I
0 I
0 I
0 I 
0 I

---I 
0 I

I hours
I-----------
I
I
I
I
I
I --
I 1000 
+-----------

command defines a set of frequency weights, w, in the resulting s t-fonnat 
st* commands automatically recognize and use these weights in any survival-time 

----  —------J as containing 25 observations (25 disk drives) instead of
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S(t) n {(« di)i«,} [ii.i]

.9608

sts graph

Figure 11.1Kaplan-Meier survival estimate
o

XIl :

I

20 80 100

I

i ,
H

<
I

8 
o

to
o

in
CM
o

= ids
■ ime
2 = se

40 60
analysis time

For a second example of sun-ivor functions, we turn to data in smoking 1 .dta, adapted from 
Rosner (1995). The observations are 234 former smokers, attempting to quit. Most did not 
succeed. Variable days records how many days elapsed between quitting and starting up again. 
The study lasted one year, and variable smoking indicates whether an individual resumed

For example, in the AIDS data seen earlier, one of the 51 individuals developed symptoms only 
one month after diagnosis. No observations were censored this early, so the probability of 
“surviving” (meaning, not developing AIDS) beyond time = 1 is

S(l)= ( 51 -1) 51 =.9804

A second patient developed symptoms at time = 2, and a third at time = 9:

S(2)= .9804 x (50-1)/50

S(9)= .9608 x ( 49-1)/49= .9412
Graphing S(t) against t produces a Kaplan-Meier survivor curve, like the one seen in Figure
11.1. Stata draws such graphs automatically with the sts graph command. For example, 

use aids, clear
(AIDS (Selvir.

failure _d 
analysis time _t 

id

o

o
0
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smoking before the end of this study (smoking= 1, “failure”) or not (smoking

(99.9% of memory free)

variable label

sex

Sorted by:

stset days, failure(smoking)

stsum, by(sex)

sex

18946 .0106091 234 4 15 73

— I 
75%

d:
t :

failure
analysis time

234
201

18946

234 
0

total obs. 
exclusions

storage 
type

8813
10133

smoking 
days

%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g

display 
format

incidence
rate

.0105526

.0106582

value 
label

110
124

Smoking (Rosner 1995:607)
21 Jul 2005 09:35

4
4

0
0

366

15
15

id 
days 
smoking 
age 
sex 
cigs 
co 
minutes

int 
int 
byte 
byte 
byte 
byte 
int 
int

smoking != 0 & smoking < . 
(0, days] 
failure

Contains data from C:\data\smokingl.dta 
obs: 234

vars: 8
size: 3,744

68
91

— Survival time 
25% 50%

no. of 
subjects

obs. remaining, representing
failures in single record/single failure data 
total analysis time at risk, at risk from t = 

earliest observed entry t = 
last observed exit t =

total |

Case ID number 
Days abstinent 
Resumed smoking 
Age in years 
Sex (female) 
Cigarettes per day 
Carbon monoxide x 10 
Minutes elapsed since last cig

Figure 11.2 confirms this similarity, showing little difference between the survivor 
functions of men and women. That is, both sexes returned to smoking at about the same rate. 
The survival probabilities of nonsmokers decline very steeply during the first 30 days after 
quitting. For either sex, there is less than a 15% chance of surviving beyond a full year.

The study involved 110 men and 124 women. Incidence rates for both sexes appear to be 
similar:

failure event: 
obs. time interval: 
exit on or before:

variable name

I
I time at risk-----+

Male |
Female |

MiioKing oeiore me eno or inis study {smoking= I, failure ) or not (smoking = 0, “censored"). 
With new data, we should begin by using stset to set the data up for survival-time analysis:
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sts graph, by(sex)

Figure 11.2

4000 100 300

sex = Male sex = Female

<

Log rank test for equality of survivor functions

sex

Total 201 201.00

J

V.l

m
o

failure
analysis time

failure 
analysis time

II Events 
observed

chi2(l) =
Pr>chi2 =

93
108

smoking 
days

smoking 
days

Events 
expected

0.17
0.6772

95.88
105.12

§. 
o'

o J .

s -o

s -
o

d : 
t:

d: 
t:

Unsurprisingly, this test finds 
recidivism of men and women.

We can also formally test for the equality of survivor functions using a log-rank test, 
no significant difference (P = .6772) between the smoking

FI

Kaplan-Meier survival estimates, by sex

Male |
Female |

200 
analysis time

sts test sex
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Cox Proportional Hazard Models

h(t)
[11.2]

[11.3a]

I

I
I

Number of obs 51

Log likelihood -86.576295

tI P> I Z |z [95% Conf Interval]
age | 1.084557 . 0378623 2.33 0.020 1.01283 1.161363

I

failure 
analysis time

5.00
0.0254

51
25

3164

[11.3b]
variables equal to 0. Cox

LR ch 12(1i 
Prob > chi2

_d:

id:

Regression methods allow 
multiple continuous or i 
regression employs a proportional hazard model, 
as

+ ... + P

2 + . •. + P,x,)

Std. Err.

probability of failing between times t and t + Ar
(Az) (probability of failing after time t) 

‘ “f,he <*.) a. dme.„d effee.s of

h(l) = ^oWexp(p1.v1 +p2x
or, equivalently,

InfT/fy] Inf^oW] + Pi-^i + P2x2 -r ... + px.xx.

Baseline hazard” means the hazard for an observation with all ,r 
regrasion estimates this hazard nonparametrically and obtains maximum-likelihood estimates 
of the P parameters m [11.3], Stata’s stcox procedure ordinarily reports hazard “ 
hazard rate681™3168 °f eXp(P)’ TheSe indicate PWort.onal changes relative to the baseline

Does age affect the onset of AIDS symptoms? Dataset aids.dta contains information that 
helps answer this questton. Note that with stcox , unlike most other Stata model-fitting 
commantk we list only theindependentvariab1^). The survival-analysis dependent variables^ 
timevanables, and censoring variables are understood automatically with s tset data. ’
. use aids
(AIDS (Selvin 1995:453))

I Ha z. Ratio

aids 
time
case

Cox regression -- Breslow method for ties
No. of subjects = 
No. of failures = 
Time at risk

w
us to take survival analysis further and examine the effects of 

categorical predictors. One widely-used method known as Cox 
--- The hazard rate for fai lure at time t is defined

stcox age, nolog
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Cox regression Breslow method for ties

Number of obs

Log likelihood -E6.576295

t P> I z | [95% Conf. Intervaljz
age5 I 1.500587 .2619305 2.33 0.020 1.065815 2.112711

I

describe patient - ab

variable label

(1) (0)or r. o n e

Thus, the hazard of AIDS onset is about 50% higher when the second person is five years older 
than the first. Alternatively, we could learn the same thing (and obtain the new confidence 
interval) by repeating the regression after creating a new version of age measured in five-year 
units. The nolog noshow options below suppress displayofthe iteration log and the st- 
dataset description.

patient 
time
coronary 
weight 
sbp 
chol 
cigs 
ab

No.
No .

storage 
type

display 
format

51
25

3164

value 
label

byte 
int 
byte 
int 
int 
int 
byte 
byte

LR chi2(1)
Prob > chi2

5.90
0.0254

I

7
7

IP

r

is 1.084557). This ratio differs significantly (P = .020) from 1. If we wanted to state our 
findings for a five-year difference in age, we could raise the hazard ratio to the fifth power:
display exp(_b[age] ) A5

1.5005865

. generate age5 = age/5

. label variable age5 "age in 5-year units"

. stcox age5, nolog noshow

Like ordinary regression, Cox models can have more than one independent variable. 
Dataset heart.dta contains survival-time data from Selvin (1995) on 35 patients with very high 
cholesterol levels. Variable time gives the number of days each patient was under observation. 
coronary indicates whether a coronary event occurred during this time (coronary = 1) or not 
(coronary = 0). The data also include cholesterol levels and other factors thought to affect heart 
disease. File heart.dta was previously set up for survival-time analysis by an st set time, 
failure (coronary) command, so we can go directly to st analysis.

I

of subjects = 
of failures = 

Time at risk

%9. Zz
%9
%9
%9
%9
%9
%9
%9.2g

s'
[I r

Patient ID number 
Time in days 
Coronary event 
Weight in pounds 
Systolic blood pressure 
Cholesterol level 
Cigarettes smoked per day 
Type A (1) or B (0) personality

variable name

Std. Err.I Haz. Ratio
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s tdes

Category total mean max

1 1 1

0

2580.629 773 2875 3141I failures 8 . 2285714 0 0

noshow nolog

Cox regression no ties

Number of obs 35

Log likelihood -17.263231

t Haz . Ratio 3rd.I p ' 9

.99670

. 1071031

Obs Mean Std. Dev. Min Max

no .
no.

(first) entry time
(final) exit time

of subjects 
of records

35
8 

90322

18 
2580.629 
. 2285714 
170.0857 
129.7143

0
0

90322

35
35

0
2580.. 629

1
773

0
120
104

0
2875

35
3141

1
225
154

failure 
analysis time

d: 
t:

coronary 
time

10.24695 
616.0796 
.426043 

23.55516 
14.28403

0
773

35
35
35
35
35

2.08
1.14

LR chi2(5)
Prob > chi2

.9349336 
1.012947 
1.032142 
1.203335
3.04969

.?"6?919 

. 943808’ 
1.0“5067 
1.01 070'’ 
.44“6492

1.432676
20.77655

No .
No .

13 . 97
0.0155

blood pressure and A/B personality do not have significant net effects, 
stcox weight sbp chol cigs ab,

of subjects = 
of failures = 

Time at risk

patient I 
time | 

coronary | 
weight | 

sbp |

per subject ----
min median

weight | 
sbp | 

chol | 
cigs I 

ab I

. 0 3 0 5184
. 03 38061

Cox regression finds that cholesterol level and cigarettes both significantly increase the 
hazard of a coronary event. Counterintuitively, weight appears to decrease the hazard. Systolic

subjects with gap 
time on gap if gap 
time at risk

After estimating the model, s tcox can also generate new variables holding the estimated 
baseline cumulative hazard and survivor functions. Since "baseline” refers to a situation with 
all a- variables equal to zero, however, we first need to recenter some variables so that 0 values 
make sense. A patient who weighs 0 pounds, or has 0 blood pressure, does not provide a useful 
comparison. Guided by the minimum values actually in our data, we might shift weight so that 
0 indicates 120 pounds, sbp so that 0 indicates 100, and chol so that 0 indicates 340:
. summarize patient - ab

Variable I
--------------- +

n n-jo
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-
i;

340

. summarize patient - abI
Obs Mean Std. Dev. Min Max

To create new

Cox regression no ties

’-.'•jr.ber

ch 12(5)IP
Log likelihood -17.263231

Ratio Std. Err. P > ! Z , [95= Co ter-.-= 1

I

i;

. replace chol = chol
(35 real changes made)

I
I
I
I
I

.9349336 
1.012947 
1.032142 
1.203335
3.04969

35
35
35

35
35
35
35
35

35
35
35

29.28571
17.14286 
.5142857

18 
2580.629 
.2285714 
50.08571 
29.71429

369.2857
17.14286
.5142857

51.32284 
13.C7702 
.5070926

343 
0 
0

3
0
0

305
40

1

Variable |
--------- +

weight 
sbp 

chol 
cigs 

ab

35
8 

90322

35
3141

1
105
54

.0305184

.0338061

.0139984

.1071031
2.985616

1
773 

0 
0 
4

10.24695 
616.0796 
.426043

23.55516 
1 4 . 28403

*■» /• c t . 0 / O 9 5 X 3 
. 9488087 
1.005067 
1.010707 
.4476492

z* -'V <. 33 O '
1.081421
1.059947
1.432676
20.7^655

645
40

1

0.039 
0.700 
0.020 
0.038 
0.255

-2.06
0.39
2.33 
2.0 5 
1 . 14

51.32284
13.07702 
.5070926

No.
No.

Note that recentering three x variables had no effect on the hazard ratios, standard errors, 
and so forth. The command created two new variables, arbitrarily named survivor and hazard. 
To graph the baseline survivor function, we plot sun ivor against time and connect data points 
with in a stairstep fashion, as seen in Figure 11.3.

chol | 
cigs | 

ab |

chol |
cigs |

ab |

of subjects = 
of failures = 

Time at risk =

. replace sbp = sbp - 100
(35 real changes made)

stcox weight sbp chol cigs ab, noshow nolog basesurv(survivor) 
basechaz(hazard)

. replace weight = weight - 120
(35 real changes made)

7

I

III

t | Haz.

patient I 
time | 

coronary | 
weight | 

sbp |

Zero values for all the x variables now make more substantive sense, 
variables holding the baseline survivor and cumulative hazard function estimates, we repeat the 
regression with basesurv () and basechaz () options:
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graph twoway line survivor time,
sort

Figure 11.31------- i

ICD 
CD

<D
CD

500 1000 2500 3000

I

4 .

connect(stairstep)

o>

f
O)

“rt” he OA6 survivor funct,on — which depicts survival probabilities for patients bavins
0 weight (120 pounds), “0” blood pressure (100), “0" cholesterol (340), 0 cigarettes per day 

and a type B personality — declines with time. Although this decline looks precipitous at the 
Xes^f th* nred r PrOba^,lty 'T2"7 °nly falls frOm 1 t0 about Given less favorable 

s of the predictor variables, the survival probabilities would fall much faster.
The same baseline sun ivor-function graph could have been obtained another way, without 

The alternative, shown mP.gure 11.4, employs an sts graph command with 
aajustfor () option listing the predictor variables:

1500 2000
Time in days
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. sts graph, adjustfor(weight sbp chol cigs ab)

Figure 11.4

1

0 1000 3000

Figure 11.4, unlike Figure 11.3, follows the usual survivor-function convention of scaling

f

o o
6

in 

d

oo 

failure
analysis time

Survivor function 
adjusted for weight sbp chol cigs ab

d:
t:

coronary 
time

m oi 
d

o 
in 
d

2000 
analysis time

the vertical axis from 0 to 1. Apart from this difference in scaling. Figures 11.3 and 11,4 depict 
the same curve.

Figure 11.5 graphs the estimated baseline cumulative hazard against time, using the variable 
{hazard) generated by our stcox command. This graph shows the baseline cumulative 
hazard increasing in 8 steps (because 8 patients “failed** or had coronary events), from near 0 
to .033.
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Figure 11.5
< j

pJ5^

1000 2500 3000

Exponential and Weibull Regression

• graph twoway connected hazard time, 
msymbol(Oh)

o

500

E ro 
N 
nj

XZ oj 
(D O

Icn 
ra

>

EP 
g

Cox regression est.mates the baseline survivor function empirically without reference to any 
theoretical distribution. Several alternative “parametric” approaches begin instead from 
assumptions that survival times do follow a known theoretical distribution Possible 
distribution famihes include the exponential, Weibull, lognormal, log-logistic, Gompertz or 
generalized gamma. Models based on any of these can be fit through the streg command. 
Such models have the same general form as Cox regression (equations [11.2] and fl 1.3]) but 
efine the baseline hazard h 0 (/) differently. Two examples appear in this section.

If failures occur randomly, with a constant hazard, then survival times follow an 
exponential distribution and could be analyzed by exponential regression. Constant hazard 
means that the individuals studied do not “age,” in the sense that they are no more or less likely 
to tail late in the period of observation than they were at its start. Over the lone term, this 
^sumption seems unjustified formachines or livingorganisms, but it might approximately hold 
if the period observation covers a relatively small fraction oftheir life spans. An exponential 
model implies that logarithms of the survivor function, ln(5(z)), are linearly related to t.
uz u C.°nd K°mrnOn Parametric approach, Weibull regression, is based on the more general 
Weibull distribution. This does not require failure rates to remain constant, but allows them 
fineT/functb oftoW Sm°Othly time' The We'bu11 model implies that ln(-ln(S«)) a

Graphs provide a useful diagnostic for the appropriateness of exponential or Weibull 
models. For example, returning to aids.dta, we construct a graph (Figure 11.6) of ln(S(/)) 
versus time, after first generating Kaplan-Meier estimates of the survivor function 5(r). The

1500 2000
Time in days

connect(stairstep) sort



306 Statistics with Stat a

v-axis labels in Figure 11.6 are given a fixed two-digit, one-decimal display format (%2.1 f) and

Sts gen S = S

. generate logS = ln(S)

Figure 11.6-0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8I
0 20 80 100

streg age, dist(exponential) nolog noshow
Expc ner. recressicni = 

-ember of obs 51

Log likelihooc -59.996976

t Std. Err. P> z [95% Conf. Interval]z

1.074414 . 0349626 2.21 0.027 1.008028 1.145172

i

I
I

51
25

3164
1= chi2(l) 
?rob > chi2

The pattern in Figure 11.6 appears somewhat linear, encouraging us to try an exponential 
regression:

40 60
Months since HIV diagnosis

co
O)

4.34
0.0372

ll

age |

The hazard ratio (1.074) and standard error (.035) estimated by this exponential regression 
do not greatly differ from their counterparts (1.085 and .03 8) in our earlier Cox regression. The 
similarity reflects the degree of correspondence between empirical and exponential hazard

. graph twoway scatter logS time, 
ylabel(-.8(.1)0, format(%2.If) angle(horizontal) )

oriented horizontally, to improve their readability.
use aids, clear 

<AILS (Selvin 1995:453))

log relative-hazard form

No. of subjects = 
No. of failures = 
Time at risk

I Haz. Ratio
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Figure 11.7Exponential regression

age=26 age=50

<______ !

survival

hazard

cumhaz

Survival function.
Hazard function.
Cumulative hazard function.

I w

Figure 11.7 shows the predicted survival curve (for transition from HIV diagnosis to AIDS) 
falling more steeply among older patients. The significant age hazard ratio greater than 1 in 
our exponential regression table implied the same thing, but using stcurve with atl () 

' .....and at2 () values gives a strong visual interpretation of this effect. These options work in 
similar manner with all three types of stcurve graphs:

s tcurve, 

s tcurve,

stcurve,

Instead of the exponential distribution, streg can also fit survival models based on the 
Weibull distribution. A Weibull distribution might appear curvilinear in a plot of ln(5(/)) 
versus t, but it should be linear in a plot of ln(-ln(S(/))) versus ln(t), such as Figure 11.8. An 
exponential distribution, on the other hand, will appear linear in both plots and have a slope

functions. According to this exponential model, the hazard of an HIV-positive individual 
developing AIDS increases about 7.4% with each year of age.

After streg,the stcurve commanddrawsagraphofthemodels’ cumulative hazard, 
survival, or hazard functions. By default, stcurve draws these craves holding all x 
variables in the model at their means. We can specify other x values by using the at () 
option. The individuals in aids.dta ranged from 26 to 50 years old. We could graph the 
survival function at age = 26 by issuing a command such as 
. stcurve, surviv at(age=26)

A more informative graph uses the atl () and at2 () options to show the survival curve at 
two different sets of x values, such as the low and high extremes of age:
. stcurve, survival atl(age=26) at2(age=50) connect(direct direct)

0 20 80 10040 60
analysis time
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ylabel(,angle(horizontal))

Figure 11.80

-1

-2

-3

-4

0 1 2 3 4 5
logtime

I

streg age, dist(weibull) noshow nolog
Weibull regression — log relative-hazard form

Number of obs 51

Log likelihood -59.778257

t P> I z I [95% Conf.z Interval;
1 . 079477 .0363529 2.27 0.023 1.010531 1.15312“
. 1232638 . 1820853 0.68 0.498 -.2336179 .4801454

••

. generate logtime = In(time)

. graph twoway scatter loglogS logtime,

1.131183 
.8840305

51
25

3164

.2059723

.1609694

LR chi2(l) 
Prcb > chi2

.7916643

.6186934
1.616309
1.263162

4.63 
0.0306

W
O) 

■§> 
p

age |

equal to 1 in the ln(-ln(5(/))) versus ln(r) plot. In fact, the data points in Figure 11.8 are not 
tar from a line with slope I, suggesting that our previous exponential model is adequate.
. generate loglogs = ln(-ln(S))

Although we do not need the additional complexity of a Weibull model with these data, 
results are given below for illustration.

The Weibull regression obtains a hazard ratio estimate (1.079) intermediate between our 
previous Cox and exponential results. The most noticeable difference from those earlier models 
is the presence of three new lines at the bottom of the table. These refer to the Weibull 
distribution shape parameter/?. Ap value of 1 corresponds-to an exponential model: the hazard

/ln_p |
----- +

P I
1/p I

No. of subjects = 
No. of failures = 
Time at risk

Std. Err.I Ha z. Ratio
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Poisson Regression

rj =

I

[H.5a]
I

I

I

I

I
variable label

ageg

J   

I
I

age 
rad

display 
format

value 
label

Age group 
-Radiation exposure level

Radiation (Selvin 1995:474) 
21 Jul 2005 09:34

%9.0g 
.%S..0g

age/radiation-exposure categories (7 categories of age 
combination,

variable name

count of events
number of times event could have occurred t11 -4]

The denominator in [11.4] is termed the “exposure” and is often measured in units such as 
person-y^rs. We model the logarithm of incidence rate as a linear function of one or more 
predictor (x) variables:

ln(r,) = Po + P^+P^ + .-.+ppr, 
Equivalently, the model describes logs of expected event counts:

ln(expectedcount) ^exposure) + Po + P.x, +P2x2 + ... ptxt [11.5b]
Assuming that a Poisson process underlies the events of interest, Poisson regression finds 
maximum-likelihood estimates of the P parameters.

Data on radiation exposure and cancer deaths among workers at Oak Ridge National 
aboratory provide an example. The 56 observations in dataset oakridge. dta represent 56

 ' x 8 categories of radiation). For each 
we know the number of deaths and the number of person-years of exposure.

Contains data from C:\data\oakridge.dta 
obs: 56

vars: 4
size: 616 (99.9% of memory free)

storage 
type 

byte 
byte

does not change with time, p > 1 indicates that the hazard increases with time; p < 1 indicates 
at the hazard decreases. A 95% confidence interval for/? ranges from .79 to 1 62 so we have 

no reason to reject an exponential (p = 1) model here. Different, but mathematically equivalent 
parametenzations of the Weibull model focus on ln(p),p, or l/p, so Stata provides all three’ 
stcurve draws survival,- hazard, or cumulative hazard functions after streq 
dxst (weibull) just as it does after streg, dist (exponential) or other streq 
models. *

E*P0"f.ntial Or Weibu11 regress>on is preferable to Cox regression when survival times 
actually follow an exponential or Weibull distribution. When they do not, these models are 
misspecified and can yield misleading results. Cox regression, which makes no a priori 
assumptions about distribution shape, remains useful in a wider variety of situations.

In addition to exponential and Weibull models, streg can fit models based on the 
Gompertz, lognormal, log-logistic, orgeneralizedgamma distributions. Type help streq 
riisTo'f curelnT'options andEpidemioloSical Tables Reference Manual, for syntax and
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Sorted by:

summarize

Obs Mean Std. Dev. Min Max

. list in 1/6

rad deathsage

6. 1 1

a

poisson deaths rad, nolog exposure(pyears) irr

Poisson regression

Log likelihood = -169.7364

IRR Std. Err. P> I z I [95% Conf. Interval]z
.0603551 4.35 0.000 1.123657 1.360606

I

1
1
1
1
1

I

deaths
pyears

1 .
2 .
3 .
4 .
5.

age 
rad 

deaths 
pyears

I
I
I
I

byte 
float

56
56
56
56

%9.0g
%9.0g

0
1
4
3
3

2.0181
2.312024
3.178203
10455.91 ’

Number of deaths 
Person-years

1
1
0

23

56
14.87 

0.0001 
0.0420

< 45 
45-49 
50-54 
55-59 
60-64

1.236469
(exposure)

7
8

16 
71382

Number of obs 
LR chi2(1) 
Prob > chi2 
Pseudo R2

4
4.5

1.839286
3807.679

rad |
pyears |

To perform a goodness-of-fit test, comparing the Poisson model’s predictions with the 
observed counts, use the follow-up command poisgof :

Does the death rate increase with exposure to radiation? Poisson regression finds 
statistically significant effect:

For the regression above, we specified the event count (deaths) as the dependent variable 
and radiation (rad) as the independent variable. The Poisson “exposure” variable is pyears, or 
person-years in each category cfirad. The irr option calls for incidence rate ratios rather 
than regression coefficients in the results table — that is, we get estimates of exp(p) instead of 
P, the default. According to this incidence rate ratio, the death rate becomes 1.236 times higher 
(increases by 23.6%) with each increase in radiation category. Although that ratio is 
statistically significant, the fit is not impressive; the pseudo A2 (see equation [10.4]) is only

Variable |

I
I
I
I

I
I
I
I
I 65-69

deaths I

------ + 
pyears I ------ I 
29901 | 
6251 | 
5251 | 
4126 | 
2778 |------ I
1607 |
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■ poisgof

I

Poisson regression

Log likelihood = -71.4653

deaths | IRR P> I z |z '95% Conf. Interva

. poisgof

. tabulate rad, gen(r)

Freq. Percent Cum.

Total | 56 100.00

• describe

___

7
7
7
7
7
7
7
7

.0593446

.0997536

12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50

58.00534
0.2960

3.23
13.22

0.001 
0.000

f
I

254.5475
0.0000

1.065924
1.773955

1.176673
1.960034 

(exposure)

Number of obs 
LR chi2(2) 
Prob > chi2 
Pseudo R2

Goodness-of-fit chi2 
Prob > chi2 (54)

1.298929
2.165631

12.50
25.00
37.50
50.00
62.50
75.00
87.50

100.00

while watching for nonlinear effects, i 
option of tabulate 
of rad.

Radiation | 
exposure | 

level | 
--------- -

1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I

56
211 .41
O.OOC-C
0.5966

■r

These goodness-of-fit test results (X2 = 254.5,P< .00005) indicate that our model’s predictions 
are significantly different from the actual counts - another sign that the model fits poorly, 
to 5^6°^ h",bCttCr reSuItS ^en we include aSe as a second predictor. Pseudo R2 then rises 

. 966, and the goodness-of-fit test no longer leads us to reject our model.
■ poisson deaths rad age, nolog exposure(pyears) irr

For simplicity, to this point we have treated rad and age as if both were continuous 
variables, and we expect their effects on the log death rate to be linear In fact however both 
independent variables are measured as ordered categories, rad = 1, for example means 0 
radiation exposure; rad =2 means 0 to 19 milliseiverts; rad =3 means 20 to 39 mHiiSZs 
and so forth. An alternative way to include radiation exposure categories in the regression.’ 

z is as a set of dummy variables. Below we use the gen () 
to create 8 dummy variables, rl to r8, representing each of the 8 values

Std. Err.

Goodness-of-fit chi2 
Prob > chi2 (53)

rad |
age | 

pyears |
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data\oakridge.dta

(99.9% of memory free)

variable name variable label

ageg

Sorted by:

. poisson deaths r2-r8 age, nolog exposure(pyears) irr

Poisson regression

Log likelihood = -69.451814

IRR Std. Err. P> I z I (95*z Conf.

test r7 r8

( 1) [deaths]r7 [deaths]r8 = 0.0

IP

I 
I 
I 
I 
I 
I 
I 
I 
!

byte 
byte 
byte 
float 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
byte

%9.0g 
%9.0g 
%9.0g 
%9.0g 
%8.0g 
%8.0g 
%8.0g 
%8.0g 
%8.0g 
%8.0g 
%8.0g 
%8.0g

display 
format

0.03
0.8676

.426898 
. 6659257 
1.088835 
.7518255
1.20691 

3.337738 
1.640978 
.1000652

value 
label

Number of obs 
LR chi2 (8) 
Prob > chi2 
Pseudo R2

age 
rad 
deaths 
pyears 
rl 
r2 
r3 
r4 
r5 
r6 
r7 
r8

storage 
type

w1 i

1.473591 
1.630688 
2.375967
. 7278113
1 . 16 = 477
4.433729 
3.89188
1.961907 

(exposure)

years
1.0000 
2.0000 
3.0000 
4.0000 
5.0000 
6.0000 
7.0000 
8.0000

2.5999’5 
3.63 0 5 6" 
5.
5.51195" 
8.847472 
19.38915 
8.893267
2.168169

Contains data from C: 
obs: 56

vars: 12
size: 1,064

1.34
1 . 20
1.89 

-0.31
0.15
1. 98
3.22 
13.21

56 
215.44 
0.0000 
0.6

0.181 
0.231 
0.059 
0.758 
0.880 
0.048 
0.001 
0.000

Age group
Radiation exposure level 
Number of deaths
Person- 
xad== 
rad== 
rad== 
rad== 
rad== 
rad== 
rad== 
rad==

.8351884 
.732 4 2 8- 

. 9677429 

.0961018 

.1543195 
1.013863 
1.703168 
1.775267

Radiation levels 7 and 8 seem to have similar effects, so we might simplify the model by 
combining them. First, we test whether their coefficients are significantly different. They are 
not:

We now include seven of these dummies (omitting one to avoid multicollinearity) as 
regression predictors. The additional complexity of this dummy-variable model brings little 
improvement in fit. It does, however, add to our interpretation. The overall effect of radiation 
on death rate appears to come primarily from the two highest radiation levels (r7 and r8, 
corresponding to 100 to 119 and 120 or more milliseiverts). At these levels, the incidence rates 
are about four times higher.

chi2( 1) =
Prob > chi2 =

deaths | ------ + 
r2 
r3 
r4 
r5 
r6 
r7 
r8 

age 
pyears

Radiation (Selvin 1995:474) 
21 Jul 2005 09:34
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age,

Poisson reg on

Log likelihood = -69.465332

deaths IRR Std. Err. P> I z | [95% Conf.z erval]

Generalized Linear Models

Generalized linear models (GLM) have the form

F [ll.6]
This general formulation

Iogit[E(v)] = P0 + pI.vl +p:.v. Bernoulli

ln[E(y)J = po + p,*, + p2x, + . . . + p Poisson [11.9]

i

Finally, substitute the new predictor for r7 and r8 in the regression: 
. poisson deaths r2-r6 r78

0.181 
0.231 
0.059 
0.758 
0.880 
0.001 
0.000

56 
215.41 
0.0000 
0.6079

1.34
1.20
1 . 89

-0. 31
0.15
3 . 48

13.21

. 8351949 

. 7 324 4 1 5 

. 9677823 

. 0961055 

.1543236 
1 . 828214 
1.775122

1.473602 
1.630718 
2.376065 
.7278387 
1.168507 
3.980326 
1.961722 

(exposure)

r2 
r3 
r4 
r5 
r6 

r78 
age 

pyears

.4269013 
6659381 
1 . 08888 
"518538 
.226942 
.580024 
.100043

g[E0)] = Po + pi.r1 + p,A-:-

ex(pyears) nolog

2.599996 
3.630655 
5.=33629 
5.512165
= . 847704 
8.665833 
2.167937

Number of obs 
LR chi2 (7) 
Prob > ch 12 
Pseudo R2

We could proceed to simplify the model further in this fashion. At each step, test helps 
to evaluate whether combining two dummy variables is justifiable.

P y~.
where g[ ] is the link function and F the distribution family, 
encompasses many specific models. For example, ifg[ ] is the identity function and v follows 
a normal (Gaussian) distribution, we have a linear regression model:

E(.v) ~ Po Pi-Vi ~ P: ~ Pt vt, y~ Normal [11-7]
If fit ] is the logit function and y follows a Bernoulli distribution, we have logit regression 
instead:

Next, generate a new dummy variable r78, which equals 1 if either r7 or r8 equals 1: 
. generate r!8 = (r7 | r8)

• • v~ Bernoulli [H.8]
Because of its broad applications. GLM could have been introduced at several different 

points in this book. Its relevance to this chapter comes from the ability to fit event models. 
Poisson regression, for example, requires thatg[ ] is the natural log function and that v follows 
a Poisson distribution:

kxk7 y

As might be expected with such a flexible method, Stata’s glm command permits many 
different options. Users can specify not only the distribution family and link function, but also 
details of the variance estimation, fitting procedure, output, and offset. These options make 
glm a useful alternative even when applied to models for which a dedicated command (such 
as regress,, logistic , or poisson ^already exists.



314 Statistics with Stata

I

Possible link functions are

opg

oim
robust
unbiased

link (loglog)
link (logo)

link(identity)
link(log)
link(logit)
link(probit)
link(cloglog)
link(opower #)

link(power #)

link(nbinomial)

family(gaussian)
family(igaussian)

Complementary log-log
Odds power
Power
Negative binomial
Log-log
Log-complement

Gaussian or normal (default)
Inverse Gaussian
Bernoulli binomial
Poisson
Negative binomial
Gamma

Identity (default)
Log
Logit
Probit

Hi!B
I

T

I

5g

I

•• ..

■ I 
t'
■

*■ ’

We might represent a “generic” glm command as follows:
. glm y xl x2 x3, family(fanzlyname) link(J inkname) 

Inoffset(exposure) eform jknife

where family () specifies the v distribution family, link() the link function, and 
Inoffset () an “exposure" variable such as that needed for Poisson regression. The eform 
option asks for regression coefficients in exponentiated form, exp(P) rather than p. Standard 
errors are estimated through jackknife ( jknife ) calculations.

Possible distribution families are

I

Coefficient variances or standard errors can be estimated in a variety of ways. A partial list 
of glm variance-estimating options is given below:

Berndt, Hall, Hall, and Hausman “B-H-cubed" variance 
estimator.
Observed information matrix variance estimator. 
Huber/White/sandwich estimator of variance. 
Unbiased sandwich estimator of variance

I : pI >
jji -■ $ 
T

I

family(binomial)
family(poisson)
family(nbinomial)
family(gamma)

We can also specify a number or variable indicating the binomial denominator N (number of 
trials), or a number indicating the negative binomial variance and deviance functions, by 
declaring them in the family () option:

family(binomial #)
family(binomial varname)
family(nbinomial #)

II-
11IH1 ' ?-!l
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nwes t
variance

jknife
!

jknifel

bstrap

estimates with the following

. glm csat link (identity) family(gaussian)expense,

Iteration 0: log likelihood = -279.99869I

errors

AIC 11.05877

csat Coef. P> I z |2 [95% Conf. Interval]

For example,

I
i

Deviance
Pearson

175306.2097
175306.2097

0.000
0.000

[Gaussian] 
[Identity]

-.0341082
996.6399

-.0104431
1124.825

51 
49 

3577.678 
3577.678
3577.678

V(u) = 1 
u

-.0222756
1060.732

Heteroskedasticity and autocorrelation-consistent 
estimator.

-3.69
32.44

= -279.9986936
= 175298.346

Log likelihood
BIC

.0060371
32.7009

No. of obs = 
Residual df = 
Scale param = 
(1/df) Deviance = 
(1/df) Pearson =

. regress csat expense 

We could fit the 
command:

Variance function: 
Link function : g(U) = 
Standard errors : OIM

expense I
_cons I

i 
■

I

A

Generalized linear models
Optimization : ML: Newton-Raphson

Jackknife estimate of variance.
One-step jackknife estimate of variance.
Bootstrap estimate of variance. The default is 199 repetitions; 
specifysome other number by adding the bsrep(#) option.

technical details, look up glm in the Base Reference

Chapter 6 began with the simple regression of mean composite SAT scores (csat) on per- 
pupil expenditures (expense) of the 50 U.S. states and District of Columbia (states.dta):

are default options, we could

For a full list of options with some 1
Manual. A more in-depth treatment ofGLM topics can be found in Hardin and Hilbe^OOl)*

Because link(identity) and family(gaussian) 
actually have left them out of the previous glm command.
_ The glm command can do more than just duplicate our regress results, however.

. , we could fit the same OLS model but obtain bootstrap standard errors:

Std. Err.

same model and obtain exactly the same
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. glm csat

Iteration 0: log likelihood = -279.99869

3 4 5

AIC 11.05877

Coef . P> I z I [95% Conf. Interval]

.1.

Link function 
Standard errors

Deviance
Pearson

175306.2097
175306.2097

[Gaussian]
[Identity]

50
100
150

-.0299751
1011.017

-.0145762
1110.448

51 
49 

4124.656 
3577.678 
3577.678

. 0039284
25.36566

-5.67
41.82

0.000
0.000

Log likelihood
BIC

Bootstrap iterations (199)---+--:------ 2---

-.0222756
1060.732

Similarly, we could USC ' 

In the following example, we 
form ( eform) coefficients:

Generalized linear models
Optimization : ML: Newton-Raphson

= -279.9986936
= 175298.346

Bootstrap
Std. Err.

No. of obs = 
Residual df
Scale param = 
(1/df) Deviance = 
(1/df) Pearson

The bootstrap standard errors reflect observed variation among coefficients estimated from 199 
samples of n = 51 cases each, drawn by random sampling with replacement from the original 
/? = 51 dataset. In this example, the bootstrap standard errors are less than the corresponding 
theoretical standard errors, and the resulting confidence intervals are narrower.

glm to repeat the first logistic regression of Chapter 10. 
ask for jackknife standard errors and odds ratio or exponential-

expense, link(identity) family(gaussian) bstrap

I 
csat | 

— —-------— — 4.

expense | 
cons ,

Variance function: V(u) = 1 
: g(u) = u 
: Bootstrap
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glm any date, link(logit) family(bernoulli) eform jknife

I

3 4 5

=

AIC 1.303574

P> I z |z [95% Conf. Interval]
1.002093 . 0015486 1.35 0.176 . 9990623 1.005133

model:

I

I

I
I
I

'"ion of the present chapter corresponds to this glm 
a9e> link(log) family(poisson)

Deviance
Pearson

Iteration 0:
Iteration 1:
Iteration 2:

log likelihood = -12.995268 
log likelihood = -12.991098 
log likelihood = -12.991096

= -12.99109634
= 19.71120426

25.98219269
22.8885488

[Bernoulli] 
[Logit]

III
Log likelihood
BIC

Variance function:
: g (u)
: Jackknife

V (u) = u*(1-u)
= In (u/ (1-u))

No. of obs 
Residual df 
Scale param 
(1/df) Deviance = 
(1/df) Pearson

23
21
1

1.23~247
1.089931

Jackknife
Std. Err.

Link function 
Standard errors

date |

though glm canreplicatethemodelsfitbymanyspecializedcommands.andaddssome 
new capabilities, the specialized commands have their own advantages including speed and 
customized options. A particular attraction of glm is its ability to fit models for which Stata 
has no specialized command.

Generalized linear models
Optimization : ML: Newton-Raphson

Jackknife iterations (23)
---- +___ j 2

The final poisson regression 
. glm deaths r2-r6 r78 r

Inoffset(pyears) eform

I
any | Odds Ratio
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pea 
factor 
greigen

Principal Components, Factor, 
and Cluster Analysis

IfO- ?
■■■■ ■ ■

alpha Cronbach’s a reliability
Instead of combining variables, cluster analysis combines observations by finding non­

overlapping, empirically-based typologies or groups. Cluster analysis methods are even more 
diverse, and less theoretical, than those of factor analysis. Stata’s cluster command 
provides tools for performing cluster analysis, graphing the results, and forming new variables 
to identify the resulting groups.

X.

Principal components and factor analysis provide methods for simplification, combining many 
correlated variables into a smaller number of underlying dimensions. Along the way to 
achieving simpl i fication, the analyst must choose from a daunting variety of options. If the data 
really do reflect distinct underlying dimensions, different options might nonetheless converge 
on similar results. In the absence of distinct underlying dimensions, however, different options 
often lead to divergent results. Experimenting with these options can tell us how stable a 
particular finding is, or how much it depends on arbitrary choices about the specific analytical 
technique.

Stata accomplishes principal components and factor analysis with five basic commands:
Principal components analysis.
Extracts factors of several different types.
Constructs a scree graph (plot of the eigenvalues) from the recent pea or 
factor.
Performs orthogonal (uncorrelated factors) or oblique (correlated factors) 
rotation, after factor.
Generates factor scores (composite variables) after pea , factor , or 
rotate.

The composite variables generated by score can subsequently be saved, listed, graphed, or 
analyzed like any other Stata variable.

Users who create composite variables by the older method of adding other variables 
together without doing factor analysis could assess their results by calculating an a reliability 
coefficient:
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Example Commands

component number from the most recent factor

Methods described in this chapter can be accessed through the following menus: 
Statistics - Other multivariate analysis
Graphics - More statistical graphs
Statistics - Cluster analysis

two factors from the most recent

. pea xl-x20

Obtains principal components of the variables xl through x20.
. pea xl-x20, mineigen(l)

Obtains principal components of the variables^/ throughx20. Retains components having 
eigenvalues greater than 1. &

. factor xl-x20, ml factor(5)
thSm five3 faTtora likeIih°Od faCt°r analysis of the variables*/ through x20. Retai ns on ly 

. greigen
Graphs eigenvalues versus factor or c
command (also known as a “scree graph”).

- rotate, varimax factors(2)
Performs orthogonal (varimax) rotation of the first 
factor command.

. rotate, promax factors(3)
Performs oblique (promax) rotationof the first three factors from the most recent factor 
command.

. score fl f2 f3

Generates three new factor score variables named//, f2, based upon the most recent
factor and rotate commands.

. alpha xl-xlO
Calculates Cronbach’s a reliability coefficient for a composite variable defined as the sum 
oveZX I f ST e ltemS entering neSative,y is ordinarily reversed. Options can 
override this default, or form a composite variable by adding together either the original 
variables or their standardized values.

■ cluster centroidlinkage x y z w, L2 name(L2cent)
Performs; agglomerative cluster analysis with centroid linkage, using variables x, y, and 
w. Euclidean distance (L2) measures dissimilarity among observations. Results from this 
cluster analysis are saved with the name L2cent.

■ cluster tree, ylabel(0(.5)3) cutnumber(20) vertlabel
Draws a cluster analysis tree graph or dendrogram showing results from the previous 
cluster analysis, cutnumber (20) specifies that the graph begins with only 20 clusters 
remaining, after some previous fusion of the most-similar observations. Labels are printed 
in a compact vertical fashion below the graph. cluster dendrogram does the 
same thing as cluster tree.
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Principal Componentsi

(99.9% of memory free)

variable label

ringlbl

Sorted by: dsun

pcf

pf1
ipfI
ml

storage 
type
s tr7 
float 
float 
byte 
byte 
float 
float 
float 
float 
float 
float 
float

display
format

value 
label

planet 
dsun 
radius 
rings 
moons 
mass 
density 
logdsun 
lograd 
logmoons 
logmass 
logdense

Solar system data
22 Jul 2005 09:49

r

Contains data from C:\daia\planets.dta 
obs : 9

vars: 12
size: 441

”1
■

*3s 
*9.0g 
*9.0g 
•B. 0g 
*B.0g 
%9.0g 
*9.0g 
*9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g

To extract initial factors or principal components, use the command factor followed 
by a variable list (variables in any order) and one of the following options:

Principal components factoring
Principal factoring (default)
Principal factoring with iterated communalities
Maximum-likelihood factoring

Principal components are calculated through the specialized command pea . Type help 
pea or help factor to see options for these commands.

. cluster generate ctype = groups(3), name(L2cent)
Creates a new variable ctype (values of 1,2, or 3) that classifies each observation into one 
of the top three groups found by the cluster analysis named L2cent.

Planet
Mean dist. sun, km*10A6 
Equatorial radius in km 
Has rings?
Number of known moons 
Mass in kilograms 
Mean density, g/cmA3 
natural log dsun 
natural log radius 
natural log (moons + 1) 
natural log mass 
natural log dense

To illustrate basic principal components and factor analysis commands, we will use a small 
dataset describing the nine major planets of this solar system (from Beatty et al. 1981). The 
data include several variables in both raw and natural logarithm form. Logarithms are 
employed here to reduce skew and linearize relationships among the variables.

variable name
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To obtain principal components factors, ty pe

factor rings logdsun - logdense, pcf(obs=9)

Factor

Variable | Uniqueness

Two factor

logdense, pcf

factor number) after any

I

. factor rings logdsun - 

In this example, we

rings | 
logdsun | 
lograd | 

logmoons | 
logmass | 

logdense |

1
2
3
4
5
6

(principal component factors;
Eigenvalue Difference

0.97917
0.67105
0.92287
0.97647
0.83377

-0.84511

3.45469 
1.05664 
0.05395 
0.02174 
0.03657

0.03526 
0.04427 
0.00875 
0.04651 
0.00821 
0.06439

4.62365 
1.16896 
0.11232 
C . 05837 
0.03663 
0.00006

0.07720 
-0.71093 
0.37357 
0.00028 
0.54463
0.47053

0.7706 
0.1948 
0.0187 
0.0097
0.0061 
0.0000

0.7706 
0.9654 
0.9842 
0.9939 
i n n n n 
1.0000

mineigen (#)

The principal components factoring ( pcf ) procedure 
eigenvalues below 1, so
• factor rings logdsun —

is equivalent to

Only the first two components have eigenvalues greater than 1, and these two components 
explain over 96 /. of the six variables’ combined variance. The unimportant 3rd throCsh 6th 
principal components might safely be disregarded in subsequent analysis.

Two factor options provide control over the number of factors extracted:

factors (#) where # specifies the number of factors
where # specifies the minimum eigenvalue for retained factors

> automatically drops factors with

2 factors retained) 
Proportion Cumulative

ractor Loadings
1 2

logdense, pcf mineigen (1) 

would also have obtained the same results by typing
- factor rings logdsun - logdense, pcf factors (2)

To see a scree graph (plot of eigenvalues versus component or f 
factor, use the greigen command. A horizontal line at eigenvalue = 1 in Figure 12 1 
marks the usual cutoff for retaining principal components, and again emphasizes the 
unimportance in this example of components 3 through 6.
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. greigen, yline(l)

Figure 12.1in

! I

O

21 3 4 5 6Number

Rotation

Rotation further simplifies factor structure. After factoring, type rotate followed bv one

varimax
promax()

■

factors ()
horst

Variable

I

rings | 
logdsun | 
lograd | 

logmoons | 
logmass I 

logdense |

0.03526 
0.04427 
0.00875 
0.04651 
0.00821 
0.06439

1

I

0.52848 
0.97173 
0.25804 
0.58824 
0.06784 

-0.88479

I:

C.82792
G.10707 
0.96159 
G.77940 
0.99357 

-0.39085

(varimax rotation)
Rotated Factor Loadings

I 1 2 Uniqueness

of these options:
Varimax orthogonal rotation, for uncorrelated factors or components (default ). 
Promax oblique rotation, allowing correlated factors or components. Choose 
a number (promax power) < 4; the higher the number, the greater the degree 
of interfactor correlation, promax (3) is the default.

oCO - 
5 
ro > c 
0) 
O) 

LU ™ -

As it does with factor , this option specifies how many factors to retain. 
Horst modification to varimax and promax rotation.

Rotation can be performed following any factor analysis, whether it employed the pcf . 
Pf» ipf »or ml options. In this section, we will follow through on our pcf example. For 
orthogonal (default) rotation of the first two components found in the planetary data, we type 
. rotate

1

I

Two additional rotate options are
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By default, this example used a promax power of 3.

I

I Factor Scores

I

VariableI

_____

rings | 
logdsun | 
lograd | 

logmoons | 
logmass | 

logdense |

(promax rotation) 
Rotated Factor 

1

0.12674 
0.48769 

-0.03840
0.16664 

-0.14338 
-0.39127

0.22099 
-0.09689 
0.30608 
0.19543 
0.34386 

-0.01609

0.03526 
0.04427 
0.00875 
0.04651 
0.00821 
0.06439

rings | 
logdsun | 
lograd | 

logmoons I 
logmass | 

logdense |

0.34664 
1.05196 
0.00599 
0.42747 

-0.21543 
-0.87190

This example accepts all the defaults: 
retained in the last factor . We could have asked for the 
following command:

fe,.

0.76264 
-0.172'?0
0.99262
0.69070 
1.08534 

-0.16922

varimax rotation and the same number of factors
---------...e same rotation explicitly, with the

We could have specified the promax

(based on rotated factors) 
Scoring Coefficients 

1 2

. rotate, varimax factors(2)

For oblique promax rotation (allowing correlated factors) of the most recent factoring, type 
• rotate, promax

power and desired number of factors explicitly:
. rotate, promax (3) factors(2)

(4} W iUld permi fUrther simplif,cation of the fading matrix, at the cost of stronger 
interfactor correlations and less total variance explained.

After promax rotation, rings, lograd. logmoons, and logmass load most heavily on factor 
hiahp apP7rS1t°be a “larSe s^/many satellites” dimension, logdsun and logdense load 

oher on factor 1, forming a “far out/low density” dimension. The next section shows how to 
create new variables representing these dimensions.

Loadings t
2 UniquenessVariable |

score fl f2

Factor scores are linear composites, formed by standardizing each variable to zero mean and 
unit variance and then we.ghtmg with factor score coefficients and summing for each factor 
score performs these calculations automatically, using the most recent rotate or 
/and0/? r6S Inthe SC°re commandwesuPPlv names for the new variables, such as 
ji dnu jz.
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label variable fl "Far out/low density"
. label variable f2 ."Large size/many satellites"
. list planet fl f2

planet fl

summarize fl f2

Variable I Obs Mean Std. Dev. Mir. Max

fl f2

1.0000

If we employ varimax instead of promax rotation, we get uncorrelated factor scores:
. quietly factor rings logdsun - logdense, pcf
. quietly rotate

! quietly v&rimaxl varimax2score

1
1

Scores on factor 1 have a moderate positive correlation with scores on factor 2: far out/low 
density planets are more likely also to be larger, with many satellites.

. correlate fl f2
(obs=9)

Being standardized variables, the new factor scoresfl and\f2 have means (approximately) equal 
to zero and standard deviations equal to one:

Saturn
Uranus

Venus
Earth

Mars

1.0000
0.4974

-1.256881 
-1 . 188757 
-1.035242 
-.5970106

. 3841085

.9259058 

.9347457 

.8161058
1.017025

9
9

- . 9172388 
-.5160229
- .3939372 
-.6799535
1.342658

Thus, the factor scores are measured in units of standard deviations from their means. Mercury, 
for example, is about 1.26 standard deviations below average on the far out/low density (fl) 
dimension because it is actually close to the sun and high density. Mercury is .92 standard 
deviations below average on the large size/many satellites (/2) dimension because it is small and 
has no satellites. Saturn, in contrast, is .93 and 1.18 standard deviations abo\ e average on these 
two dimensions.

9.93e-09
-3.31e-09

-1.256881
-1.43534

1.017125
1.342658

•ii

1 .
2 .
3.
4 .
5.

6.
7 .
8 .
9.

I
I
I Mercury
I
I
I
I Jupiter
I---------------
I
I
I Neptune
I Pluto

E

Promax rotation permits correlations between factor scores:

fl I
f2 I

fl I
f2 |

----- + 
f2 | 

I 
I 
I 
I 
I 
I 
I 

1.184475 I 
.7682409 | 

.647119 I 
-1.43534 | 
------------- +
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1
1.0000

Figure 12.2• Pluto1

.5
• Jupiter

0

-.5
• Mars

-1

1 1.5

i

iI

correlate varimaxl varimax2
(obs = 9)

1 . oooc-
0.0000

• Uranus • Saturn
• Neptune

I
■•5 0 .5
Large size/many satellites

c

1 s
o
ro 

LU

I varimaxl varimax2 -------- + 
varimaxl I 
varimax2 |

Once created by score , factor scores can be treated like any other Stata variable — 
listed, analyzed, graphed, and so forth. Graphs ofprincipal component factors sometimes help 
to identify multivariate outliers orclusters of observations that stand apart from the rest. For 
example. Figure 12.2 reveals three distinct types of planets.
. graph twoway scatter fl f2, yline(0) xline(O) mlabel(planet) 

mlabsize(medsmall) ylabel(, angle(horizontal)) 
xlabel(-1.5 ( .5)1.5, grid)

• Earth
. Mercury”Venus

The inner, rocky planets (such as Mercury, low on “far out/low density” factor 1; low also 
on “large size/many satellites" factor 2) cluster together at the lower left. The outer gas giants 
have opposite characteristics, and cluster together at the upper right. Pluto, which physically 
resembles some outer-system moons, is unique among planets for being high on the “far out/low 
density" dimension, and at the same time low on the “large size/many satellites” dimension.

This example employed rotation. Factor scores obtained by principal components without 
rotation are often used to analyze large datasets in physical-science fields such as climatology 
and remote sensing. In these applications, principal components are called “empirical 
orthogonal functions.” The first empirical orthogonal function, or EOF1, equals the factor 
score for the first unrotated principal component. EOF2 is the score for the second principal 
component, and so forth.
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Principal Factoring

are

pf
ipf

d.

rings logdsun logdense, ipf

(obs=9)
4-

Factor

Variable 3 5 UniquenessI:

94

factor rings logdsun logdense, ipf factor(2)

(obs = 9)

Factor

I

! i

E

Communality estimates equal 7?2 from regressing each variable on all the others. 
Iterative estimation of communalities.

Principal factoring extracts principal components from a modified correlation matrix, in which 
the main diagonal consists of communality estimates instead of I’s. The factor options 
pf and ipf both perform principal factoring. They differ in how communalities 
estimated:

i
2
3
4
5
6

1
2
3
4
5
6

4.57495
1.10083
0.02452 
0.00439 
-0.00356 
-0.02537

3.47412
1.07631
0.02013

00795
0.02182

1074 
~ 5" 6 
= 941

0.113"’4
0.14114

0.8061
0.1940
0.0043
0.0008

-0.0006
-0.0045

0.8061 
1.0000 
1.0043 
1.0051
1.0045 
1.0000

!

-0.02234 
0.00816 
0.01662 
0.01597 

-0.00714 
0.00997

0.02916
0.09663

-0.00036
0.05636

-0.00069
0.00217

4.59663
1.12846 
0.07739 
0.01301 
0.00125 

-0.00012

0.7903 
0.9843 
0.9976
0.9998 
1.0000 
1.0000

3.46817
1.05107

. 06438
:.01176 
:.00137

0.7903
0.1940
0.0133
0.0022
0.0002

-0.0000

0.97599 
0.65708 
0.92 67 0 
0.96738 
0.63753 

-0.84602

t-

0.00•o. c-

rings I 
logdsun I 
lograd I 

logmoons i 
logmass i 

logdense

(iterated principal factors; 2 factors retained) 
Eigenvalue Difference Proportion Cumulative

2.06649
-C.6'054

5 factors retained) 
Proportion Cumulative

Whereas principal components analysis focuses on explaining the variables’variance, principal 
factoring explains intervariable correlations.

We apply principal factoring with iterated communalities ( ipf ) to the planetary data: 
factor

Only the first two factors have eigenvalues above 1. With pcf or pf factoring, we can 
simply disregard minor factors. Using ipf . however, we must decide how many factors to 
retain, and then repeat the analysis asking for exactly that many factors. Here we will retain 
two factors:

-0.02065
0.C4471
0.04665

-0.08593
0. 12 82 4 

-0.00610

(iterated principal factors;
Eigenvalue lifference

-actor Loadings
I 1 '2
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Variable Uniqueness

Maximum-Likelihood Factoring

factor

ml nolog factor(1)
(obs=9)

Factor

1 4.47258 1.0000 1.0000

Variable |

The ml output includes two %2 tests:
J vs .

J vs .

6) =
9) =

1
1 Prob > chi2 =

Prob > chi2 =

retained)
Proportion Cumulative

rings | 
logdsun | 
lograd | 

logmoons | 
logr.ass | 

logdense |

vs.
vs.

0.97474
0.65329
0.92816
0.9685-5 
0.84298 

-0.82938

0.02535 
0.64931 
0.12288 
0.08052 
0.24451
0.40487

Chi2 (
Chi2 (

0.05374
-0.67309
0.36047

-0.02278
0.54616
0.46490

0.04699
0.12016
0.00858
0.06139

-0.00890
0.09599

62.02,
51.73, 0.0000

0.0000

i

rings [ 
logdsun I 
lograd | 

logmoons I 
logmass | 

logdense I

0.98726 
0.59219 
0.93654 
0.95890 
0.86918 

-0.77145

Test:
Test:

I

(maximum likelihood factors; 1 factor 
Variance Difference

Factor Loadings
1 Uniqueness

i-likelihood factor for the planetary data, typ< 
. factor rings logdsun - logdense,

no factors

This tests whether the current model, with/factors, fits the observed correlation matrix 
significantly better than a no-factor model. A low probability indicates that the current 
model is a significant improvement over no factors.
more factors

This tests whether the current /-factor model fits significantly worse than a more 
complicated, perfect-fit model. A low P-value suggests that the current model does not 
nave enough factors.

no factors.
mere factors.

maximum-likelihood factor for the planetary data, type

Factor Loadings
1 2

After this final factor analysis, we can create composite variables by rotate and 
score . Rotation of the ipf factors produces results similar to those found earlier with 
pef a far out/low density dimension and a large size/many satellites dimension When 
kss difference 3 Str°nS d°’ SpeCiflC teChniques we choose make
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The previous 1-factor example yields these results:
1 vs .

62.02. P .00005). The 1-factor model

1 vs .

0.0000 (P < .00005). The 1-factor model is significantly worse

Perhaps a 2-factoi model will do better:
factor rings logdsun - logdense, ml nolog factor(2)

(obs=9)

i - s;
Factor

1.67115

12 ■no
vs. more

Variable iqueness

■ n K K = = I

Now we find the following:
i 2

i

-

Factor
1

factors.
factors.

0.0’7829 
0.22361 
0.00028 
0.08497 
0.00000 
0.00000

0.6489
1.0000

0.0000
0.1513

(maximum iikeli'r.
Variance

. | 
a i

rings : 
logdsun | 
lograd I 

logmoons I 
logmass I 

logdense I

1 0.6489
0.3511

Prob > chi2 =
Prob > chi2 =

0.20923 
0.98437 
0.81560 
0.99965 

-0.46434

134.14,
6.72,

Test :
Test:

:hi2 ( 
7hi2 (

3.64201
1.97085

.41545 

.35593 

.17528 

.49982 

.02639 

.38565

id fact
• - - o-a-

vs. more factors

Z' [4] = 6.72, P = 0.1513. The 2-factor model is not significantly worse than a perfect-fit 
model.

2 vs.
2

s. no factors

Z ’ [1~] “ 134.14, P = 0.0000 (actually. P < .00005). The 2-factor model significantly 
improves upon a no-factor model.

no factors

Z ‘ [6] = 62.02. P = 0.0000 (actually, meaning P 
significantly improves upon a no-factor model.

I

These tests suggest that two factors provide an adequate model.
Computational routines performing maximum-likelihood factor analysis often yield 

improper solutions’ — unrealistic results such as negative variance or zero uniqueness. When 
this happens (as it did in our 2-tactor ml example), the % 2 tests lack formal justification. 
Viewed descriptively, the tests can still provide informal guidance regarding the appropriate 
number of factors.

I

more factors 

x2 [9] = 51.73,P = C 
than a perfect-fit model.

2 factors retained)
Proportion Cumulative

i/

■
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Cluster Analysis — 1

I

I
/ (

specified hypotheses. Indeed, there exists little formal theoiy to guide hypothesis testing for 
the common clustering methods. The number of choices available at each step in the analysis 

daunting, and all the more so because they can lead to many different results This section 
provides no more than an entry point to begin cluster analysis. We review some basic ideas and 
i us rate them through a simple example. The following section considers a somewhat larger 
example. Stata sMi//nva/7a/e^to/?e/ere„ceM«wwaZintroduces anddefines the full ran„e

choices available. Everitt et al. (2001) cover topics in more detail, including helpful 
comparisons among the many cluster-analysis methods. P
nwfHT'Hv ryCth°ds fal1 int0 two broad categories, partition and hierarchical. Partition 
ways todo this °bSerVat,OnS lnt0 aPre-set "^ber of nonoverlapping groups. We have two

cluster kmeans Kmeans cluster analysis
keSrafiSveeCifleS 1 W t0 c™16- Stata then flnds these thr°ugh an
iterative process, assigning observations to the group with the closest mean.

cluster kmedians Kmedians cluster analysis
Similar to Kmeans, but with medians.

Partition methods tend to be computationally simpler and faster than hierarchical methods The 
Xk,howeveE 8 CXaCt nUmber0f Clusters in advance a disadvantage for exploratory

Hierarchical methods, involve a process of smaller groups gradually fusing to form 
it^tartsT / T °T ?ata a88lomerative aPProach in hierarchical cluster analysis-
it starts out with each observation considered as its own separate “group ” The closest two 
groups are merged, and this process continues until a specified stoppifg-point is reached o IS 
observations belong to one group. A graphical display called a dent^rarn orZeediaZa" 
visualizes h'erarchical clustering results. Several choices exist for the linkage method Jhich 
specifies what should be compared between groups that contain more than one observation:

cluster singlelinkage Single linkage cluster analysis
omputes the dissimilarity between two groups as the dissimilarity between the closest pair 

of observations between the two groups. Although simple, this method has low resistance 
Z IlerS77easurement errors- Observations tend to join clusters one at a time, forming 

unbalanced, drawn-out groups in which members have little in common, but are linked by 
intermediate observations — a problem called chaining. V

cluster completelinkage Complete linkage cluster analysis
ZZZl lfaithtSt Palr °f Ob™ions between the two groups. Less sensitive to outliers 
mo ti2 t n6’ W ‘t °PP0Site tendenCy t0Wards clumP*nS many observations 

into tight, spatially compact clusters.

cluster averagelinkage Average linkage cluster analysis
S^edHt^t diSSimilar1ity of observations between the two groups, yielding properties 
intermediate between-single and complete linkage. Simulation studies report that this



330 Statistics with Stata

■

i

••

I
i
<I
I

i
t

Ijl i

11

kj the value ofx* for observationy, and

works well for many situations and is reasonably robust (see Everitt et al. 2001, and sources 
they cite). Commonly used in archaeology.

cluster centroidlinkage Centroid linkage cluster analysis
Centroid linkage merges the groups whose means are closest (in contrast to average linkage 
which looks at the average distance between elements of the two groups). This method is 
subject to reversals — points where a fusion takes place at a lower level of dissimilarity 
than an earlier fusion. Reversals signal an unstable cluster structure, are difficult to 
interpret, and cannot be graphed by cluster tree.

cluster waveragelinkage Weighted-average linkage cluster analysis 
cluster medianlinkage Median linkage cluster analysis.

Weighted-average linkage and median linkage are variations on average linkage and 
centroid linkage, respectively. In both cases, the difference is in how groups of unequal 
size are treated when merged. In average linkage and centroid linkage, the number of 
elements of each group are factored into the computation, giving correspondingly larger 
influence to the larger group (because each observation carries the same weight). In 
weighted-average linkage and median linkage, the two groups are given equal weightine 
regardless of how many observations there are in each group. Median linkage, like centroid 
linkage, is subject to reversals.

cluster wardslinkage Ward’s linkage cluster analysis
Joins the two groups that result in the minimum increase in the error sum of squares. Does 
well with groups that are multivariate normal and of similar size, but poorly when clusters 
have unequal numbers of observations.

All clustering methods begin with some definition of dissimilarity (or similarity). 
Dissimilarity measures reflect the differentness or distance between two observations, across 
a specified set of variables. Generally, such measures are designed so that two identical 
observations have a dissimilarity of 0, and two maximally different observations have a 
dissimilarity of 1. Similarity measures reverse this scaling, so that identical observations have 
a similarity of 1. Stata s cluster options offer many choices of dissimilarity or similarity 
measures. For purposes of calculation, Stata internally transforms similarity to dissimilarity:

dissimilarity = 1 - similarity

The default dissimilarity measure is the Euclidean distance, option L2 (or Euclidean ). 
This defines the distance between observations i and j as

{lLk(xki-xkjy}12
where xkj is the value of variable .vk for observation z, xkj the value ofx* for observationj, and 
summation occurs over all the x variables considered. Other choices available for measuring 
the (dis)similarities between observations based on continuous variables include the squared 
Euclidean distance ( L2squared),

Lk^ki-xkjy
the absolute-value distance (LI). maximum-value distance (Linf inity), and correlation 
coefficient similarity measure ( correlation). Choices for dissimilarities or similarities 
based on binary variables include simple matching (matching ), Jaccard binary similarity 
coefficent ( Jaccard), and many others. Type help cldis for a list and explanations.
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summ

Variable | Obs Mean Min Max

I
zlogdens | 9 -1.32e-08 1 -1.453143 1.128901

I
I

I

lljy.

zrings | 
zlogdsun I 
zlograd | 

zlogmoon | 
zlogmass |

9
9
9
9
9

1
1
1
1
1

-.8432741
-1.393821

-1 .3471
-1.207296
-1.74466

W 
■I

-1.99e-08 
-1.16e-08 
-3.31e-09 

0 
-4 .14e-09

1.054093 
1.288216
1.372751
1.175849
1.365167

Std. Dev.

The three types” conclusion suggested by our principal components analysis is robust and 
could have been found through cluster analysis as well. For example, we might perform a 
hierarchical cluster analysis with average linkage, using Euclidean distance ( L2 ) as our 
dissimilarity measure. The option name (L2avg) gives the results from this particular 
analysis a name, so that we can refer to them in later commands. The results-naminn feature 
is convenient when we need to try a number of cluster analyses and compare their outcomes.
. cluster averagelinkage zrings zlogdsun zlograd zlogmoon zlogmass 

zlogdens, L2 name(L2avg)

Nothing seems to happen, although we might notice that our dataset now contains three new 
variables with names based on L2avg. These new L2avg* variables are not directly of interest, 
but can be used unobtrusively by the cluster tree command to draw a cluster analysis 
tree or dendrogram visualizing the most recent hierarchical cluster analysis results (Figure 
12.3). The label (planet) option here causes planet names (values of planet) to appear 
as labels below the tree. Typing cluster dendrogram instead of cluster tree 
would produce the same graph.

Earlier in this chapter, a principal components analysis of variables in planets.dta (Figure 
12.2) identified three types of planets: inner rocky planets, outer gas giants, and in a class by 
itself, Pluto. Cluster analysis provides an alternative approach to the question of planet “types.” 
Because variables such as number of moons (moons) and mass in kilograms (mass) are 
measured in incomparable units, with hugely different variances, we should standardize in some 
way to avoid results dominated by the highest-variance items. A common, although not 
automatic, choice is standardization to zero mean and unit standard deviation. This is 
accomplished through the egen command (and using variables in log form, for the same 
reasons discussed earlier), summarize confirms that the new z variables have (near) zero 
means, and standard deviations equal to one.
. egen zrings = std(rings)

egen zlogdsun = std(logdsun)

. egen zlograd = std(lograd)

. egen zlogmoon = std(logmoons)

. egen zlogmass = std(logmass)

. egen zlogdens - std(logdense)

zrings - zlogdens
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Figure 12.3
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. cluster tree, label(planet) ylabel(0(1)5)
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Mercury Venus3 Earth Mars Pluto Jupiter Saturn Uranus Neptune 

Dendrogram for L2avg cluster analysis

Dendrograms such as Figure 12.3 provide key interpretive tools for hierarchical cluster 
analysis. We can trace the agglomerative process from each observation its own cluster, at 
bottom, to all fused into one cluster, at top. Venus and Earth, and also Uranus and Neptune, 
are the least dissimilar or most alike pairs. They are fused first, forming the first two multi­
observation clusters at a height (dissimilarity) below 1. Jupiter and Saturn, then Venus-Earth 
and Mars, then Venus-Earth-Mars and Mercury, and finally Jupiter-Saturn and 
Uranus-Neptune are fused in quick succession, all with dissimilarities around 1. At this point 
we have the same three groups suggested in Figure 12.2 by principal components: the inner 
rocky planets, the gas giants, and Pluto. The three clusters remain stable until, at much higher 
dissimilarity (above 3), Pluto fuses with the inner rocky planets. At a dissimilarity near 4, the 
final two clusters fuse.

So, how many types of planets are there? The answer, as Figure 12.3 makes clear, is “it 
depends.” How much dissimilarity do we want to accept within each type? The long vertical 
lines between the three-cluster stage and the two-cluster stage in the upper part of Figure 12.3 
indicate that we have three fairly distinct types. We could reduce this to two types only by 
fusing an observation (Pluto) that is quite dissimilar to others in its group. We could expand 
it to five types only by drawing distinctions between several planet groups (e.g., Mercury-Mars 
and Earth-Venus) that by solar-system standards are not greatly dissimilar. Thus, the 
dendrogram makes a case for a three-type scheme.

The cluster generate command creates a new variable indicating the type or group 
to which each observation belongs. In this example, groups (3) calls for three groups. The 
name (L2avg) option specifies the particular results we named L2avg. This option is most 
useful when our session included multiple cluster analyses.
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name(L2avg)

planet

1; the gas giants as plantype

I

I
Cluster Analysis — 2I

1985ca.
(99.9% of memory free)

variable label

--- Li fe

Saturn
Uranus

Venus
Earth
Mars

storage 
type

display 
format

value 
label

6 .
7 .
8 .
9.

1 .
2 .
3.
4 .
5.

st r8 
float 
byte 
byte 
byte 
int 
byte

1
1
1
1
3

country 
pop 
birth 
death 
chldmort 
infmort 
life

%9s 
%9.0g 
%8 . Og 
%8 . Og 
%8 . Og 
%8 . Og 
%8.0g

Contains data from C:\data\nations.dta 
obs: 109

vars: 15
size: 4,142

cluster generate plantype = groups(3), 

. label variable plantype ’’Planet type” 

• list planet plantype

Data on 109 nations, 
23 Jul 2005 18:37

Country
1985 population in millions 
Crude birth rate/1000 people 
Crude death rate/1000 people 
Child (1-4 yr) mortality 1985 
Infant (<1 yr) mortality 1985 

expectancy at birth 1985

fe
ff®'

Discovering a simple, robust typology to describe the nine planets was straightforward. For a 
more challenging example, consider the cross-national data in nations.dta. This dataset 
contains living-conditions variables that might provide a basis for classifying countries into 
types.

The inner rocky planets have been coded as plantype = 1; the gas giants as plantype = 3; 
and Pluto, which resembles an outer-system moon more than it does other planets, is by itself 
as plantype = 2. The group designations as 1,2, and 3 follow the left-to-right ordering of final 
clusters in the dendrogram (Figure 12.3). Once the data have been saved, our new typology 
could be used like any other categorical variable in subsequent analyses.

These planetary data have a strong pattern of natural groups, which is why such different 
techniques as cluster analysis and principal components point towards similar conclusions. We 
could have chosen other dissimilarity measures and linkage methods for this example, and still 
arrived at much the same place. Complex or weakly patterned data, on the other hand, often 
yield quite different results depending on nuances of the methods used. The clusters found by 
one method might not prove replicable under others, or even with slightly different analvtical 
decisions.

I
i
I Mercury
I
I
I
I Jupiter
I---------------
I
I
I Neptune
I Pluto

variable name

plantype I 
I 
I 
I 
I 
I 
I 
I 

3 I 
3 I 
3 I 
2 I
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Sorted by:

In Chapter 8, we saw that nonlinear transformations (logs

6 i

■I;

variable label

? I
rli fe float % 9.-.PS__

2

food 
energy 
gnpcap 
gnpgro 
urban 
schooll 
school2 
schools

storage 
type
float
float
float

%9 . Og 
%9. Og 
%9 . Og

display 
format

value 
label

rpop
rbirth
rinf

int 
in t 
int 
float 
byte 
int 
int 
byte

% 9 . Og
* i . Og
* 6 . Og 
%9. Og 
%c . Og 
%8 . Og 
%8 . Og 
%8 . Og

Annual GNP growth 
% population urban 
Primary enrollment ;
Secondary enroll - 
Higher ed. enroll

variable name

Per capita daily calories 1985 
Per cap energy consumed, kg oil 
Per capita GNP 1985 

% 65-85 
1985 
age-grrup 

age-group 
; age-group

Range-standardized population 
Range-standardized bith rate 
Range-standardized infant 
mortality

Range-standardized life

r(min)) 
"Range-standardized bith rate" 
detail

infmort/(r(max) - r(min))
"Range-standardized infant mortality"

and so forth, defining the 8 new variables listed below. These range-standardized variables all 
have ranges equal to 1.
. describe rpop-rschool2

o, yvc nidi nonlinear transformations (logs or square roots) helped to 
normalize distributions and linearize relationships among some of these variables. Similar 
arguments for nonlinear transfonnations could apply to cluster analysis, but to keep our 
example simple, we will not pursue them here. Linear transformations to standardize the 
variables in some fashion remain important, however. Otherwise, the variablegnpcap, which 
ranges from about $100 to SI9,000 (standard deviation $4,400) would overwhelm other 
vaiiables such as life, which ranges from 40 to 78 years (standard deviation 11 years). In the 
Previous section, we standardized planetary data by subtracting each variable’s mean, then 

ividing by its standard deviation, so that the resulting z-scores all had standard deviations of 
one. In this section we take a different approach, range standardization, which also works well 
for cluster analysis.

Range standardization involves dividing each variable by its range. There is no command 
to do this directly m Stata, but we can improvise one easily enough. The summarize, 
detail command calculates one-variable statistics, and afterwards unobtrusively stores the 
results in memory as macros (described in Chapter 14). A macro named r (max) stores the 
variable’s maximum, and r (min) stores its minimum. Thus, to generate new variable rpop, 
defined as a range-standardized version of pop (population), type the commands 
. quietly summ pop, detail
. generate rpop = pop/(r(max) - r(min))
. label variable rpop "Range-standardized population"

Similar commands create range-standardized versions ofother living-conditions variables: 
. quietly summ birth, detail 
. generate rbirth = birth/(r(max) 
. label variable rbirth 

. quietly summ infmort, 

. generate rinf 

. label variable rinf
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per
r energy

energy per
r ?r;ycsp ■ 9 . : g

rschoo!2 floar %9.0g secondary

summarize rschool2rpop

Vari ar le Me a n Std. Max

. cluster LI name {LIwav)

or cutnumber() options

I

I

i

1.001846
1.005741
1.019608

. 1206474

. 3098672

.2913825
.291343

.2644839

109
109
109
109
108

1.000962 
1.227273 
1.035503 
2.052632 
1 . 779378

. 03744 93 

.7452043 

.4051354 
1.621922 
1.230213

.2137914

.2319276

.2899882

. 159786 
.1666459 
.4574849

.- -ia4 64 

. 0057411 

.019607=

107

104

- 1 0 09622 
.Z27272'7
.035503

1. 052632 
.’■93776

rr.sner using the cutv = lue()

expectancy
Range-standardized food 

capita
Range-standardized 

capita
Range-standardized 

capita
Range-standardized 

school %

The full cluster analysis proves unmanageably large fora tree graph: 
. cluster tree 
too many leaves;
»■ / 1 Q Q V . *. V J. -> w ,

waveragelinkage rpop - rschool2,

rpop i 
rbirth |

rinf I 
rlife | 
rfood |

renergy ;
rgnpcap ;

rschoolz i

After the variables of interest have been standardized, we can proceed with cluster analysis 
As we divide more than 100 nations into “types," we have no reason to assume that each type 
will include a similar number of nations. Average linkage (used in our planetary example) 
a ong with some other methods, gives each observation the same weight. This tends to make 
larger clusters more influential as agglomeration proceeds. Weighted average and median 
linkage methods, on the other hand, give equal weight to each cluster regardless of how many 
o servations it contains. Such methods consequently tend to work better for detecting clusters 
of unequal size. Median linkage, like centroid linkage, is subject to reversals (which will occur 
with these data), so the following example applies weighted average linkage. Absolute-value 
distance ( LI ) provides our dissimilarity measure.

GNP per

Following the error-message advice. Figure 12.4 employs a cutnumber (100) option to 
form a dendrogram that starts with only 100 groups, after the first few fusions have taken place.
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. cluster tree, ylabel (0 ( . 5)3) cutnumber(100)

3i Figure 12.4
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Dendrogram for L1wav cluster analysis
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quite different from all the rest. This is one of four clusters remaining above dissimilarities of 
2. The first and second of these four final clusters (reading left to right) appear heterogeneous, 
formed through successive fusion of a number of somewhat distinct major subgroups. The third 
cluster, in contrast, appears more homogeneous. It combines many nations that fused into two 
subgroups at dissimilarities below I, and then fused into one group at slightly above 1.

Figure 12.5 gives another view of this analysis, this time using the cutvalue (1) option 
to show only clusters with dissimilarities above 1. The vertlabel option, not really 
needed here, calls for the bottom labels (G1. G2. etc.) to be printed vertically instead of 
horizontally.

3

11

-

I >II

The bottom labels in Figure 12.4 arc unreadable, but we can trace the general flow of this 
clustering process. Most of the fusion takes place at dissimilarities below 1. Two nations at 
far right are unusual; they resist fusion until about 1.5, and then form a stable two-nation group

§
i

1.5-I
I
V"

I m 
a*''
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cluster tree, ylabel(0(.5)3) cutvalue(1) vertlabel

Figure 12.5
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groups remaining at dissimilarities above 1
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11.
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Argentir.
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Belgium
Canada
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As Figure 12.5 shows, there are 11 
purposes of illustration.

? § ? 9 S
Dendrogram for LI wav cluster analysis

generate ctype = groups (4), name(nwir)
• label variable ctype "Country type"

We could next examine which countries belong to which groups by typing 
by ctype: list country

«-< -----------——UV/V7 W 1. Fol

above 2 'Vl1* COnsider onl*the t0P four groups, which have dissimilarities
the H \ 7 generate creates a categorical variable for the final four groups from
the cluster analysis we named Llwav. K*uups irom

cluster
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The two-nation cluster seen at far right in Figure 12.4 turns out to be type 4, China and 
India. The broad, homogeneous third cluster in Figure 12.4, type 3, contains a large group of 
the poorest nations, mainly in Africa. The relatively diverse type 2 contains nations with higher 
liv ing conditions including the U.S.. Europe, and Japan. Type 1, also diverse, contains nations 
with intermediate conditions. Whether this or some other typology is meaningful remains a 
substantixe question, not a statistical one. and depends on the uses for which a typology is 
needed. Choosing different options in the steps of our cluster analysis would have returned 
different results. By experimenting with a variety of reasonable choices, we could gain a sense 
of which findings are most stable.

SauArabi
S r i La n k a

I Syria
I Thailand

Tunisia
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ac y, lags(8) level(95) generate(newvar)
Graplis; autocorrehtions of variable^, with 95% confidence intervals (default) for lags 1 
through 8. Stores the autocorrelations as the first 8 values of newvar. S

. arch D.y, arch(l/3) ar(l) ma(l)
Fits an ARCH (autoregressive conditional heteroskedasticity) model for first differences
disturbances"18 third_°rder ARCH terms> and first-order AR and MA

. arima y, arima(3,l,2)
Fits a simple ARIMA(3,12) model. Possible options include several estimation strategies, 
linear constraints, and robust estimates of variance.

- arima y, arima(3,l,2) sarima(1,0,1,12)
Fits ARIMA model including a multiplicative seasonal component with period 12.

. arima D.y xl Ll.xl x2, ar(l) ma(l 12)

diff®rences ofP°n*A lag-1 values ofxl, andx2, including AR(1),MA(1), 
ana MA( 12) disturbances.

Stata’s evolving time series capabilities are covered in the 350-page Time-Series Reference 

explorations.
A technical and thorough treatment of time series topics is found in Hamilton (1994) 

?? nnnn lnC Ude B°X’ Jenklns’ and Reinsel (1994), Chatfield (1996), Dioole (1990) 
Enders (1995), Johnston and DiNardo (1997), and Shumway (1988).

Menus for time series operations come under the following headings:
Statistics - Time series

Statistics - Multivariate time series
Statistics — Cross-sectional time series

Graphics - Time series graphs
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corrgram y, lags(8)

Obtains autocorrelations, partial autocorrelations, and Q tests for lags 1 through 8.
dfuller y

Performs Dickey-Fuller unit root test for stationarity.
dwstat

After regress , calculates a Durbin-Watson statistic testing first-order autocorrelation.
. egen newvar = ma(y), nomiss t(7)

Generates newvar equal to the span-7 moving average ofy, replacing the start and end 
values with shorter, uncentered averages.

. generate date = mdy(mon th,day,year)
Creates variable date, equal to days since January 1, 1960, from the three variables month, 
day. and year.

. generate date = date(str_date, "mdy")
Creates variable date from the string variable str_date, where str_date contains dates in 
month, day, year form such as “IF 19/2001”, “4/18/98”, or “June 12, 1948”. Type help 
dates for many other date functions and options.

. generate newvar = L3. y
Generates newvar equal to lag-3 values ofy.

• Pac Yt lags(8) yline(O) ciopts(bstyle(outline) )
Graphs partial autocorrelations with confidence intervals and residual variance for lags 1 
through 8. Draws a horizontal line at 0; shows the confidence interval as an outline, instead 
of a shaded area (default).

. pergram y, generate(newvar)
Draws the sample periodogram (spectral density function) of variable^ and creates newvar 
equal to the raw periodogram values.

. prais y xl x2
Performs Prais-Winsten regression of y on xl and x2, correcting for first-order 
autoregressive errors, prais y xl x2, core does Cochrane-Orcutt instead.

smooth 73 y, generate (newar)
Generates newvar equal to span-7 running medians ofy, re-smoothing by span-3 running 
medians. Compound smoothers such as “3RSSH” or “4253h,twice” are possible. Type 
help smooth , or help tssmooth ,for other smoothing and filters.

tsset date, format(%d)
Defines the dataset as a time series. Time is indicated by variable date, which is formatted 
as daily. For “panel” data with parallel time series for a number of different units, such as 
cities, tsset city year identifies both panel and time variables. Most of the 
commands in this chapter require that the data be tsset.

tssmooth ma newvar = y, window(2 1 2)
Applies a moving-average filter toy, generating newvar. The window (2 1 2) option 
finds a span-5 moving average by including 2 lagged values, the current observation, and 
2 leading values in the calculation of each smoothed point. Type help tssmooth for 
a list of other possible filters including weighted moving averages, exponential or double 
exponential, Holt-Winters, and nonlinear.

1
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corrgram ).

1

Smoothing

1/83

(99.9% of memory free)

I variable label

I

 

use in 1000 gallons
Sorted by:

day year water

I

I

month 
day 
year 
water

1
1
1
1
1

storage 
type

4
2, 120

1
2
3
4
5

1983
1983
1983
1983
1983

%9.0g 
%9.0g 
%9.0g 
%9.0g

display 
format

520
600
610
590
620

value
label

Month
Date
Year
Water

vars :
size:

byte 
byte 
int 
int

Before further analysis, we need to convert the month, day, and year information into a 
single numerical index of time. Stata’s mdy() function does this, creatine an elapsed^iate 
variable (named date here) indicating the number of days since January 1, 1960.
generate date = mdy{month,day,year)

• list in 1/5

Many time senes exhibit rapid up-and-down fluctuations that make it difficult to discern 
underlying patterns. Smoothing such series breaks the data into two parts, one that varies 
gradually, and a second “rough” part containing the leftover rapid changes:

data = smooth + rough
Dataset.MILwater.dta contains data on daily water consumption for the town of Milford, New 
Hampshire over seven months from January through July 1983 (Hamilton 1985b).
Contains data from MILwater.dta 

obs: 212

variable name

. tssmooth nl newvar = y, smoother(4253hztwice)
Applies a nonlinear smoothing filter toy, generating newvar. The
smoother (425 3h, twice) option iteratively finds running medians of span 4.2,5, and 
3, then applies Hanning, then repeats on the residuals, tssmooth nl , unlike other 
tssmooth procedures, cannot work around missing values.

. wntestq y, lags(15)

Box-Pierce portmanteau Q test for white noise (also provided by
. xcorr x y, lags (8) xline(0)

Graphs cross-correlations between input (x) and output (y) variable for lags 1-8.
xcorr x y, table gives a text version that includes the actual correlations (or 
include a generate (newvar) option to store the correlations as a variable).

Milford daily water use, 
- 7/31/83

27 Jul 2005 12:41

+-----
I month
I

1. I
2. I
3. I
4. I
5. I

date | ----- I
8401 |
8402 |
8403 |
8404 I
8405 |
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. list in 1/5

day wateryear

Figure 13.1

l

o

19feb1983 30may1983 19jul1983

1
1

1

1
2
3
4
5

520
600
610
590
620

date I --------- I 
01janl983 | 
02janl983 I 
03janl983 | 
04janl983 I 
05janl983 I

I

10apr1983 
date

1983
1983
1983
1983
1983

o
co
Sided 982

o
CD

We can provide more 
data for later analyses, by using the 

the time index variable and to specify

I

Dates in the new date format, such as “05janl983”, are more readable than the underlying 
numerical values such as “8405” (days since January 1, 1960). If desired, we could use %d 
formatting to produce other formats, such as “05 Jan 1983” or “01/05/83”. Stata offers a 
number of variable-definition, display-format, and dataset-format features that are important 
with time series. Many of these involve ways to input, convert, and display dates. Full 
descriptions of date functions are found in the Data Management Reference Manual and the 
User's Guide, or they can be explored within Stata by typing help dates .

The labeled values Qi date appear in a graph of water against date, which shows day-to-day 
variation, as well as an upward trend in water use as summer arrives (Figure 13.1):
. graph twoway line water date, ylabel(300(100)900)

f'

o
w®
o
ro o 
0)0

o o
•£o
<U <D co 
3
o o gS

The January 1, 1960 reference date is an arbitrary default, 
understandable formatting for date, and also set up our 
tsset (time series set) command to identify date as 
the %d (daily) display option for this variable.

tsset date, format(%d) 
time variable: date, 01janl983 to 31jull983

I month
I

1. I
2. I
3. I
4 . I
5. I

+
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I

+ l*x(t)

I
I

are available through thetssmooth commands. All but tssmooth nl 
tssmooth ma
tssmooth exponential
tssmooth dexponential
tssmooth hwinters
tssmooth shwinters
tssmooth nl

Type help tssmooth_exponential , 
syntax of each command.

Figure 13.2 graphs a simple 5-day moving average of Milford water use (waterS), together 
with the raw data (water). This graph twoway command overlays a line plot of smoothed 
waters values with a line plot of raw water values (thinner line). .Y-axis labels mark start-of- 
month values chosen “by hand” (8401, 8432, etc.) to make the graph more readable 
Readability is also improved by formatting the labels as %dmd (date format, but only month 
followed by day). Compare Figure 13.2’s labels with their default counterparts in Figure 13.1.

tssmooth ma waters = water, window(2 1 2) 
The smoother applied was

(1/5)*[x(t-2) + x(t-1) + x(t + l) + x(t+2)]; x(t)= water

Visual inspection plays an important role in time series analysis. It often helps us to see 
underlying patterns in jagged series if we smooth the data by calculating a “moving average” 
attach point from its present, earlier, and later values. For example, a “moving average of span 
3 refers to the mean ofyandy ,+I . We could use Stata’s explicit subscripting to 
generate such a variable:
. generate water3 = (water[_n-l] + water[_n] + water[_n+l] )/3

Or, we could apply the ma (moving average) function of egen :
. egen waters = ma(water), nomiss t(3)

The nomiss option asks for shorter, uncentered moving averages in the tails; otherwise, the 
first and last values of waterJ would be missing. The t (3) option calls for moving averages 
of span 3. Any odd-number span >3 could be used.

For time series ( tsset ) data, powerful smoothing tools
can handle missing values.

moving-average filters, unweighted or weighted 
single exponential filters
double exponential filters
nonseasonal Holt-Winters smoothing
seasonal Holt-Winters smoothing
nonlinear filters

help tssmooth—hwinters , etc. for the
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Figure 13.2

■

Ju!1May1 Jun1Apr1Feb1 Marl

i

oo
CD

I I 
I I

. tssmooth nl water4r = water, smoother(4253h,twice)
Figure 13.3 graphs new smoothed values, water4r. Compare Figure 13.3 with 13.2 to see 

how the 4253h, twice smoothing performs relative to a moving-average. Although both 
smoothers have similar spans, 4253h, twice does more to reduce the jagged variations.

i

:4

Moving averages share a drawback of other mean-based statistics: they have little 
resistance to outliers. Because outliers form prominent spikes in Figure 13.1, we might also try 
a different smoothing approach. The tssmooth nl command performs outlier-resistant 
nonlinear smoothing, employing methods and a terminology described in Vellemanand Hoaglin 
(1981) and Velleman (1982). For example,
. tssmooth nl waterSr = water, smoother(5)

daily water use 
5-day average

Aug1

creates a new variable named water5r, holding the values of water after smoothing by running 
medians of span 5. Compound smoothers using running medians of different spans, in 
combination with “banning” (‘/4, ’/z, and Va -weighted moving averages of span 3) and other 
techniques, can be specified in Velieman’s original notation. One compound smoother that 
seems particularly useful is called “4253h, twice.” Applying this to water, we calculate 
smoothed variable water4r:

o o - 
W CO 
o 
ro o Oo - o o o 
eg. 
qCD 
<z> 
3 

^2  
m 

o o -

o
o -
CO Li-

Jani

i

graph twoway line waters date, elwidth(thick) 
line water date, ciwidth(thin) cipattern(solid) 
, ylabel(300(100)900) 

xlabel(8401 8432 8460 8491 8521 8552 8582 8613, 
grid format(%dmd)) 

xtitle("”) ytitle(Water use in 1000 gallons) 
legend(order(2 1) position(4) ring(0) rows(2) 

label (1 "5-day average") label(2 "daily water use"))
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Figure 13.3

I

Feb1 Marl May1Apr1 Jun1 Jul1

twice"

I
Figure 13.4
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o o

o
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daily water use 
4253h, twice smooth

Aug1

oo
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Jani

nartST reSu0Ur 8 ln smoothing is t0 >ook for patterns in smoothed plots With these 
particular data, however, the “rough” or residuals after smoothing actually hold more interest 
We can calculate the rough as the difference between data and smooth and Z Z anh S 
results in another time plot, Figure 13.4. ’ graph the
. generate rough = water - water4r

. label variable rough "Residuals from 4253h,
. graph twoway line rough date,

xlabel(8401 8432 8460 8491 8521 8552 8582 8613 
grid format(%dmd)) xtitle("")
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-1

r-

. i

Further Time Plot Examples

(99.9% of memory free)

variable label

Sorted by: year

:ime variable:

list year fylltemp wNAO if tin(1950,1955)

fylltemp

111

Before analyzing these time series, we tsset the dataset, which tells Stata that the 
variable year contains the time-sequence information.
. tsset year, yearly

wAO 
tcodl 
tshrimpl

1 .
2 .
3 .

storage 
type

float
float
float

int 
float 
float 
float 
float

%9.0g
%9.0g
%9.0g

%ty
%9.0g
%9.0g
%9.0g
%9.0g

display 
format

value 
label

year 
fylltemp 
fyllsal 
nuuktemp 
wNAO

Greenland climate & fisheries 
27 Jul 2005 12:41

i

Dataset atlantic.dta contains time series of climate, ocean, and fisheries variables for the 
northern Atlantic from 1950-2000 (the original data sources include Buch 2000. and others 
cited in Hamilton, Brown, and Rasmussen 2003). The variables include sea temperatures on 
Fylla Bank off west Greenland; air temperatures in Nuuk, Greenland’s capital city; two climate 
indexes called the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO); and 
catches of cod and shrimp in west Greenland waters.
Contains data from atlantic.dta 

obs: 51
vars: 8
size: 1,734

+----------
I year
I----------
I 1950
I 1951
I 1952

1 I 
I

The wildest fluctuations in Figure 13.4 occur around March 27-29. Water use abruptly 
dropped, rose again, and then dropped even further before returning to more usual levels. On 
these days, local newspapers carried stories that hazardous chemical wastes had been 
discovered in one of the wells that supplied the town’s water. Initial reports alarmed people, 
but they were reassured after the questionable well was taken offline.

The smoothing techniques described in this section tend to make the most sense when the 
observations are equally spaced in time. For time series with uneven spacing, lowess regression 
(see Chapter 8) provides a practical alternative.

Year
Fylla Bank temp, at 0-40r.
Fylla Bank salinity at 0-40m 
Nuuk air temperature
Winter (Dec-Mar)

Lisbon-Stykkisholmur NAC 
Winter (Dec-Mar) AO index 
Division 1 cod catch, lOOSt 
Division 1 shrimp catch, LOOOt

IJ
•Mi

-----+
wNAO |----- I

2.1 1.4 |
1.9 -1.26 |
1^-6__  _83_J__

variable name

With a tsset dataset, two new qualifiers become available: tin (times in) and 
twithin (times within). To list Fylla temperatures and NAO values for the years 1950 
through 1955, type

year, 1950 to 2000
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6. 1.2

The twithin
list

fyl1 temp

I

degrees C") ylabel(0 (1)3)

Figure 13.5

o

1

1960 1970 1980 1990I 2000

2.
3.
4 .
5 .

4 .
5 .

qualifier works similarly, but excludes the two endpoints: 
year fylltemp wNAO if twithin(1950,1955)

1.9
1.6
2.1
2.3

2.1
2.3

The smoothed values of Figure I 
cooler water. Of course, “warmer” i,

I 1953
I 1954
I----------
I 1955 
+--------

O
v> 
0) 
fl>
CD
<D

TJ
(D CXI
2 ro
CD

E
0)

m
=3^

I I 
I I 
xtitle ("”

.18 |

.13 |
----------- I
-2.52 •

o
1950

13.5 exhibit irregular periods of generally warmer and 
is a relative term around Greenland; these summer sea 

temperatures rise no higher than 3.34 °G(37 °F). -

wNAO | ----- I 
-1.26 |

.83 |

.18 | 

.13 | -----+

I yearI-----
I 1951
I 1952
I 1953
I 1954

We use ts smooth nl to define a new variable,fyll4, containing 4253h, twice smoothed 
values Qifylltemp (data from Buch 2000).
. tssmooth nl fyll4 = fylltemp, smoother(4253h, twice)
Figure 13.5 graphs raw {fylltemp) and smoothed (fyll4) Fylla Bank temperatures. Raw 
temperatures are shown as spike-plot deviations from the mean (1.67 °C), so this araph 
emphasizes both decadal cycles and annual variations.
. graph twoway spike fylltemp year, base (1.67) yline(1.67)

II line fy!14 year, cipattern(solid)
' ytitie("Fylla Bank temperature, degrees C") ylabel(0(1)3) 

) xtick(1955(10)1995) legend(off)
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by yline(O, axis (2)) marks the zero point oftheNAO index. On both axes, numerical

Figure 13.63
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Overlaid plots provide a way to visually examine how several time series vary together. 
In Figure 13.6, we see evidence of a negative correlation: high-NAO periods correspond to low 
temperatures. The physical mechanism behind this correlation involves northerly winds that 
bring Arctic air and water to west Greenland during high-NAO phases. The negative 
temperature-NAO correlation became stronger during the later part of this time series, roughly 
the years 1973 to 1997. We will return to this relationship in later sections.

labels are written horizontally. The legend appears at the 5 o’clock position inside the plot 
space, position (5) ring(0) .
. graph twoway line fyll4 year, yaxis(l).

ylabel (0 (1)3 , angle(horizontal) nogrid axis(l))
ytitle("Fylla Bank temperature, degrees C", axis(l))
I | line wNA04 year, yaxis(2) ytitle("Winter NAO index", axis(2)) 
ylabel (-3 (1)3 , angle(horizontal) axis(2)) yline(0, axis(2))
II , xtitleC") xlabel (1950 (10) 2000 , grid) xtick (1955 (5) 1 9 95 ) 
legend(label (1 "Fylla temperature") label (2 "NAO index") cols(l)

position(5) ring(0))

3
I
I

I
I
/

Fylla Bank temperatures are influenced by a large-scale atmospheric pattern called the 
North Atlantic Oscillation, or NAO. Figure 13.6 graphs smoothed temperatures together with 
smoothed values of the NAO (a new variable named wNA04). For this overlaid graph, 
temperature defines the left axis scale, yaxis(l) , and NAO the right, yaxis(2) . Further 
j^-axis options specify whether they refer to axis 1 or 2. For example, a horizontal line drawn
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Lags, Leads, and Differences

WrlAO

We could have obtained this

I

I

I

I 
I

I 
I F.

F2 .
D.

D2.
S.

S2 .

I

3
4
5

1 . 4 
.26 
.83 
.18

I ■!

T

wNA0_2 |
-------------I

same thing, using tsset data, is with Stata’s L. (lag)

1 . 4
-1.26

.83

. 18 

.13

Udg operators are often simpler than an explicit-subscripting approach. More imnortantl v the 
lag opeiators also respect panel data. To generate lag 2 values, use Y’

I year
I----------
I 1950
I 1951
I 1952
I 1953
I 1954

1.4 J
-1.26 |

.83 |

means LI. through

•generate wNAO_2 = L2.wNAO
(2. missing values generated)

• list year wNAO wNA0_l wNA0_2 if tin(1950,1954)

same list without generating any new variables, by instead typing 
. list year wNAO L.wNAO L2.wNAO if tin(1950,1954)

The L. operator is one of several that simplify the analysis of tsset datasets Other 
ttme series operators arc F. (lead). D. (difference), and S. (seasonal difference) ’ Sese 
operators can be typed in upper or lowercase-for example, F2 . wNAO or f2.wNAO.

Time Series Operators
l .
L2.

Lag y, 1 ( LI. means the same thing) 
2-period lag r.., (similarly. L3.,etc. L(l/4) 
L4 .)

Lead v/+, ( Fl. means the same thing) 
2-period lead(similarly, F3 ., etc.) 
Differencey, (DI. means the same thing) 
Second difference (y,-y,.,) J (similarly, D3.,etc.)
Seasonal differencey,-yf |, (which is the same as D.) 
Second seasonal difference (y, -y,_2) (similarly, S3 ., etc.) 

XXX' differen«s S12 . does not mean “12th difference,” but rather a first 
difference at lag 12. For example, if we had monthly temperatures instead of yearly, we might

Time series analysis often involves lagged variables, or values from previous times Lags can 
specified by explicit subscnpttng. For example, the following command creates variable 

n >JAO_1, equal to the previous year's NAO value: variable
•generate wNA0_l = vWA0[_n-l] 
(x missing value generated)

An alternative way to achieve the
operator:
•generate wNAO_l = L.wNAO 
(- missing values generated)

Lag operators are often simpler than
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r

. regress fylltemp wNAO Ll.wNAO L2.wNAO L3.wNAO if tin(1973,1997)

ss df MS

6.67778254 24 .278240939

fylltemp Coef. Err . t P> 111 [95% Conf. terva11
wNAO

cons

Equivalently, we could have typedB

predicted fylltemp, = 1.728 169uArJQ + .004h\V^Q

. dwstat

Durbin-Watson d-statistic( 5 25) = 1 . 423806

ill
Autocorrelated errors, commonly encountered with time series, invalidate the usual OLS 
confidence intervals and tests. More suitable regression methods for time series are discussed 
later in this chapter.

. regress fylltemp L(0/3).wNAO if tin(1973,1997) 

The estimated model is

i
i
i
I
I
I

- . 1688424
.0043805

- . 0472993
.0264682
1.727913

3 . 1884913
3.48929123

4
20

0.001
0.918
0.363
0.599
0.00 0

.797122826

.174464562

LI
L2
L3

-4.09 
0.10 

-0.93 
0.53 

14.24

-.2549917
- .0835294
-.1533725
- .0768738
1.474763

.2412995 

. 0421436
. 050851 

.0495416 

. 1213588

. 0826931 

.0922905 
.058774

.1298102 
1.981063

2 c
4 . 57 

0.0088 
0.4775 
0.3 7 30 
.41769St

JI

+ .026vvAC40.3
Coefficients on the lagged terms are not statistically significant: it appears that current 
(unlagged) values of wNAO, provide the most parsimonious prediction. Indeed, if we re- 
estimate this model without the lagged terms, the adjusted R2 rises from .37 to .43. Either 
model is very rough, however. A Durbin-Watson test for autocorrelated errors is inconclusive, 
but that is not reassuring given the small sample size.

-.047wM4Of2

want to calculate S12 . temp . which would be the differences between December 2000 
temperature and December 1999 temperature, November 2000 temperatures and November 
1999 temperature, and so forth.

Lag operators can appear directly in most analytical commands. We could regress 1973-97 
fylltemp on wNAO, including as additional predictors wNAO values from one, two, and three 
years previously, without first creating any new lagged variables.

1

ir
Number of obs = 
Ft 4, 20) =
Prob > F 
R-squared 
Adj R-squared = 
Root MSE

I"
b'

Source I 
----------+

Model |
Residual | 
--------- +

Total |

1-r'11
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Correlograms

LAG AC Q Prob>Q

~j 2 ~

Lags appear at the left side of the table, and are followed by columns for the autocorrelations
■

I

I — 
I-
I
I

-I
I
I
I

-I

I --
I
I
I
-1

I
I -

--I
--1

1
2
3
4
5
6
7
8
9

0 1
[Partial Autocor]

8.8151 
11.012 
11.361 
11.364 
12.912 
13.234 
13.382 
14.047 
17.243

0.0030 
0.0041 
0.0099 
0.0228 
0.0242 
0.0395 
0.0633 
0.0805 
0.0450

-1 0 1-1
(Autocorrelation]

0.4038
0.1996
0.0788
0.0071 

-0.1623 
-0.0733
0.0490 

-0.1029 
-0.2228

0.4141 
0.056~ 
0.0045 

-0.055c 
-0.2232 
0.0880 
0.136"

J 

More refined graphical autocorrelation plots 
. ac fylltemp, lags(9)

The resulting correlogram, Figure 13.7, includes a shaded 
confidence intervals. Correlations outside of these intervals

(AC) and partial autocorrelations (PAC). For example, the correlation betweenfylltemp and 
jylltemp ,_2 is .1996, and the partial autocorrelation (adjusted for lag 1) is 0565 The Q 
statistics (Box-Pierce portmanteau) test a series of null hypotheses that all autocorrelations up 
to and including each lag are zero. Because the P-values seen here are mostly below .05, we 
can reject the null hypothesis, and conclude that.fylltemp shows significant autocorrelation. If 
none of the Q statistics had been below .05, we might conclude instead that the series was 
white noise” with no significant autocorrelation.

At the right in this output are character-based plots of the autocorrelations and partial 
autocorrelations. Inspection of such plots plays a role in the specification of time series models.

’ ’ . ‘ i can be obtained through the ac command:

area marking pointwise 95% 
are individually significant.

Autocorrelation coefficients estimate the correlation between a variable and itself at particular 
lags. For example, first-order autocorrelation is the correlation betweeny and y . Second 
order refers to Cor[r„ r,,]. and so forth. A correlogram graphs correlation versus "lags.

Stata’s corrgram command provides simple correlograms and related information The 
maximum number of lags it shows can be limited by the data, by matsize , or to some 
arbitrary lower number that is set by specifying the lags () option:
. corrgram fylltemp, lags(9)
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Figure 13.7
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A similar command, pac , produces the graph of partial autocorrelations seen in Figure 
13.8. Approximate confidence intervals (estimating the standard error as l/x/n~) also appear in 
Figure 13.8. The default plot produced by both ac and pac has the look shown in Figure 
13.7. For Figure 13.8 we chose different options, drawing a baseline at zero correlation, and 
indicating the confidence interval as an outline instead of a shaded area.
. pac fylltemp, yline(O) lags(9) ciopts(bstyle(outline))
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Bartlett's formula for MA(q) 95% confidence bands
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lags(9) xlabel (-9 (1)9, grid)

Figure 13.9Cross-correlogramo
o

1 . 1 •1
J J JI

4 9

i
command, and the output

lags (9) table

LAG CORR

I

-0.0541 
-0.0786 
0.1040 

-0.0261 
-0.0230
0.3185
0.1212
0.0053 

-0.0909 
-0.6740 
-0.1386 
-0.0865

I
I
I
I
I
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I
I
I

-I
- I

I

8 
o

-9 
-8 
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-4 
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-2 
-1 
0 
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I 
i

-1 0 1
[Cross-correlation]

o q

o
o

8 
o
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Ifwe list our input or independent variable first in the xcorr < - - -
or dependent variable second - as was done for Figure 13.9 - then positive lags denote 
corre ations between input at time t and output at time t +1, / +2, etc. Thus we see a positive 
correlation of .394 between winter NAO index and Fylla temperature four’vears later 

be “,eX, VerSi“ °f ""

. xcorr wNAO fylltemp if tin (1973,1997) ,

J

xcorr vNAO fylltemp if tin(1973,1997) ,

Cross-correlograms help to explore relationships between two time series Fieure 13 9
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ARIMA Models

i

i y,

I

i
i --
i -
i
i

--1
--1

3
4
5
6
7
8
9

0

0.0-57
0.3940
0.2464
0.1100
0.0183

-0.2699
-0.3042

I
i

I
r'i
r

or
arima y, arima(l,0,l)

The i in arima stands for “integrated,” referring to models that also involve differencing. 
To fit an ARIMA(2,1,1) model, use
. arima y, arima(2,1,1)

or equivalently.

ar(1) ma(1)

R; -PR,-! 4-e, [13.2]
where p is the first-order autocorrelation parameter, 6 is the first-order moving average 
parameter, and € is a white-noise (normal i.i.d.) disturbance, arima fits simple models as 
a special case of [13.1] and [13.2], with a constant (p 0) replacing the structural term xt p. 
Therefore, a simple ARMA( 1,1) model becomes

y. =Po + R;

= Po + PR/-i +0e,_I +e, [13.3]

Some sources present an alternative version. In the ARMA(1,1) case, they show as a 
function of the previous y value (y,_,) and the present (g ,) and lagged (g disturbances:

j\ = a + py,_I +0g/_i 4-g, [13.4]

Because in the simple structural model y, = p 0 + p ,, equation [13.3] (Stata’s version) is 
equivalent to [ 13.4], apart from rescaling the constant a = (l-p)P 0.

Using arima , an ARMA(1,1) model (equation [13.3]) can be specified in either of two 
ways:

arima

Autoregressive integrated moving average (ARIMA) models for time series can be estimated 
through the arima command. This command encompasses simple autoregressive (AR), 
moving ax erage (MA), or ARIMA models of any order. It also can estimate structural models 
that include one or more predictor variables and AR or MA errors. The general form of such 
structural models, in matrix notation, is

=x,P + p, [13 J]

where y, is the vector of dependent-variable values at time t, x, is a matrix ofpredictor-variable 
values (usually including a constant), and p, is a vector of disturbances. Those disturbances 
can be autoregressive or moving-average, of any order. For example, ARM A( 1,1) disturbances 
are
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I

I

I

I

Test 
Statistic

-13.300
-2.930

:o
:o

Z(rho) 
Z(t)

Number of obs = 
Newey-West lags =

-29.871
-4.440

-18.900
-3.580

-10
-2

i
I

50
3

two predictor variables .v (present 
w,), with ARIMA( 1,0,1) errors, an

Similarly, a Dickey-Fuller GLS test evaluating the null hypothesis thatfylltemp has a unit 
route (versus the alternative hypothesis that it is stationary with a possibly nonzero mean but 
no linear time trend) rejects this null hypothesis (P < .05). Both tests thus confirm the visual 
impression of stationarity given by Figure 13.5.

MacKinnon approximate p-value for Z(t) = 0.0003

Interpolated Dickey-Fuller --------
1% Critical 5% Critical 10% Critical

Value Value Value”

Phillips-Perron test for unit root

. arima D.y, ar(l 2) ma(l)

Either command specifies a model in which first differences of the dependent variable (y. - v, ,) 
are a function of first differences one and two lags previous -yt_2 and y,_2 - V/ 3) and also 
of present and previous disturbances (e, and

To estimate a structural model in which y, depends on 
and lagged values, x, and x,.!) and w (present values only, 
appropriate command would be

arima y x L.x w, arima(1,0,1)

Although seasonal differencing (e.g., S12 .y) and/or seasonal lags (e.g., L12 . x ) can be 
included, as of this writing arima does not estimate multiplicative ARlMA(p,r/,^)(P.Z).(?)s 
seasonal models.

A time series y is considered “stationary” if its mean and variance do not change with time, 
and if the covariance betweeny, andy,+„ depends only on the lag u, and not on the particular 
values oft. ARIMA modeling assumes that our series is stationaiy, or can be made stationary 
through appropriate differencing or transformation. We can check this assumption informally 
by inspecting time plots for trends in level or variance. Formal statistical tests for “unit roots” 
(a nonstationary AR(1) process in which p, = 1, also known as a “random walk”) also help 
Stata offers three unit root tests, pperron (Phillips-Perron), dfuller (augmented 
Dickey-Fuller), and dfgls (augmentedDickey-FullerusingGLS,generally a more powerful 
test than dfuller).

Applied to Fylla Bank temperatures, a pperron test rejects the null hypothesis of a unit 
root (P<.01).
. pperron fylltemp, lag(3)
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. dfgls fylltemp, notrend maxlag(3)

DF-GLS for fylltemp Number of obs = 47

(lags]

preliminary

AR(/7)

MA(r/)

ARMAQ?,#) and

Correlogram spikes at seasonal lags (for example, at 12, 24, 36 i

. arima fylltemp, arima (1,0,0) nolog

ARIMA regression

Sample: 1950 to 2000

Log likelihood = -48.66274

fylltemp Coef. P> I z I [95% Conf. Interval]z

1.68923 .1513096 11.16 0.000 1.392669 1.935792

.4095759 .1492491 2.74 0.006 .1170531 .7C20987

/sigma | . 627151 .0601859 10.42 0.000 . 5091889 .7451131

. display [ARMA]_se[LI.ar]

. 14924909

fylltemp
cons

Opt Lag (Ng-Perron 
Min SC 
Min MAIC =

3
2
1

I 
I

-2.304
-2.479
-3.008

0 [use maxlag (0)]
1 with RMSE
2 with RMSE

-2.620 
-2.620 
-2.620

.6578912

.6569351

10% Critical
Value

-1.913
-1.938
-1.959

51
7.53

0.0061

seq t) =
- -.6735952 at lag 

-.2683716 at lag

1% Critical 
Value

5% Critical
Value

-2.211
-2.238
-2.261

I
I 
+

OPG
Std. Err.

Number of obs
Wald chi2(l)
Prob > chi2

ARMA 
ar

'' !

!

DF-GLS mu
Test Statistic

I
I

LI I
-----+

r
For a stationary series, correlograms provide guidance about selectine a 

ARIMA model:

After we fit an arima model, its coefficients and other results are saved temporarily in 
Stata’s usual way. For example, to see the recent model’s AR(1) coefficient and s.e., type 
. display [ARMA]_b[LI.ar] 
.4095759

An autoregressive process of order p has autocorrelations that damp out 
gradually with increasing lag. Partial autocorrelations cut off after lag p.
Amoving average process of order q has autocorrelations that cut off after lag 
q. Partial autocorrelations damp out gradually with increasing lag.
A mixed autoregressive-moving average process has autocorrelations 
partial autocorrelations that damp out gradually with increasing lag.

- . . . in monthly data) indicate a
seasonal pattern. Identification of seasonal models follows similar guidelines, but applied to 
autocorrelations and partial autocorrelations at seasonal lags.

Figures 13.7-13.8 weakly suggest an AR(1) process, so we will try this as a simple model 
forfylltemp.
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resid

. corrgram fyllres, lags(15)

LAG AC PAC Q Prob>;

I

. wntestq fyllres, lags(15)

Portmanteau test for white noise

I statistic =

More complicated

i
I

- i
orrelation]

i -

I -
I

Portmanteau (Q) 
Prob > chi2(15)

-0.0173
0.0467
0.0386
0.0413 

-0.1834 
-0.0498
0.1532 

-0.0567 
-0.2055 
-0.1156
0.1397 

-0.0028
0.1091
0.1014 

-0.0673

0.0176 
0.0465 
0.0497 
: .0496 
: .2450 
: .0602 
: .2156

. 0726 

. 3232 

.2418 

.2794 

. 1606 

. 0647 

. 0547

. 2837

10.9435
0.7566

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

P 
appear to be uncorrelated “white noise.” ’ 
other case statistics) after arima through predict
- predict fyllres,

.0162 
.13631 
.22029 
.31851 
2.2955 
2.4442 
3.8852
4.087 

6.8055 
7.6865 
9.0051 
9.0057 
9.8519 
10.603 
10.943

-1
[Aur :

0.89-" 
0.9341 
0.9742 
0.9866 
0.806? 
0.874’ 
0.792? 
0.84?2 
0.65’4 
0.6594 
0.6214 
0.7024
0.7061 
0.716? 
0.7566

I

significant autocorrelation among residuals out to las 15. We 
j a wntestq (white noise test Q statistic)

corrgram’s 0 test finds no ‘ 
could obtain exactly the same result by requestins 
for 15 lags.

improves the predictions. For this model, we include wNAO as 
term to account for autocorrelation of errors.

1 )kCOefficient in this examP'e is statistically distinguishable from zero (t = 2

-------------- We can obtain residuals (also predicted values, and

By these criteria, our AR(1) or ARIMA(l,0,0) model appears adequate 
versions, with MA or higher-order AR terms, do not offer much improvement in fit.

A similar AR(1) model ^sfylltemp over just the years 1973-1997. During this period 
however, information about the winter North Atlantic Oscillation (wNAO) '’significantly 

a predictor but keep an AR(I)

-i o i
[Partial Autocor]
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. arima fylltemp wNAO if tin(1973,1997) ,

ARIMA regression
Sample: 1973 to 1997
Log likelihood = -10.3481 0.001-

fylltemp Coef. P> I z I [95% Conf.z In e r v a

96-7=2

.2965222 .237438 1.25 0.212 - . 1688478

/sigma | .36536 .0654008 5.59 0.000 .2371767

resid

. corrgram fyllres2, lags(9)

LAG AC PAC Q Prob>Q

- I

Number of cbs 
Wald chi2(2) 
Prob > chi2

-.2778317
1.439141

1
2
3
4
5
6
7
8
9

0.1485 
-0.1028
0.0495
0.0887 

-0.1690 
-0.0234
0.2658 

-0.0726 
-0.1623

0.1529 
-0.1320 
0.1182 
0.0546 

-0.2334
0.0722 
0.3062 

-0.2236 
-0.0999

-.1736227
1.703462

1.1929 
1.7762 
1.9143 
2.3672 
4.0447 
4.0776 
8.4168 
8.7484 
10.444

.0531688

.1348599

0.2747 
0.4114 
0.5904 
0.6686 
0.5430 
0.6662 
0.2973 
0.3640 
0.3157

0.001
0.000

I-
I
I
I

-I
I
I --
I

- I

I -
- I

fylltemp 
wNAO
cons

-1 0 1
[Autocorrelation]

ARMA 
ar

-1 0 1
[Partial Autocorj

-3.27
12.63

2

. predict fyllhat
(option xb assumed; predicted values)

label variable fyllhat "predicted temperature"

. predict fyllres2,

ar(l) nolog

I r

!

OPG
Std. Err.

wNAO has a significant, negative coefficient in this model. The AR( 1) coefficient now is 
not statistically significant. If we dropped the AR term, however, our residuals would no longer 
pass corrgram’s test for white noise. Figure 13.10 graphs the predicted values, fyllhat, 
together with the observed temperature series fylltemp. The model does reasonably well in 
fitting the main warming/cooling episodes and a few of the minor variations. To have the v-axis 
labels displayed with the same number ofdecimal places (0.5,1.0,1.5,... instead of.5,1. 1.5,...) 
in this graph, we specify their format as %2 . If .

I
I
I

----- +
I
I

Ll I

lib
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)

ring(O) col(l))

I Figure 13.102.5

I
2.0

I

I

I 
0.5

1975 1980 1985 1990 1995

Prais-Winster. AR(1) iterated estimatesregression
Source SS df MS

6.69562833 24 .278984501

Soef. Std. Err t P> i t [95% Conf. Interval]

.2951576
Durbin-Watson statistic
Durbin-Watson statistic

3.3581925=
3.33743545

.037567
.1153695 -.2512733

1.464776
-.0958468
1 . 942096

25
23.14 
0.0001 
0.5016 
0.4799 
.38093

(original) 1.344998
(transformed) 1.789412

1
23

3.35819258 
.145105889

fylltemp I -------- +
0.000
0.000

-.17356
1.703436

-4 . 62
14 . 77

A technique called Prais-Winsten regression ( prais ), which corrects for first-order 
autoregressive errors, can also be illustrated with this example.
. prais fylltemp wNAO if tin (1973,1997) , nolog

rho |

I I 
I I 
ytitie ( "Degrees C") : —----
legend(label (1 "observed temperature") 

label (2 "model prediction") position(5)

wNAO | 
cons | ----+

Total |

• graph twoway line fylltemp year if tin (1973, 1997) 
line fyllhat year if tin(1973, 1997)
, ylabel ( . 5 ( .5)2.5, angle(horizontal) format(%2.If)) 

) xlabel(1975(5)1995, grid) xtitle(""

Model |
Residual I

prais is an older method, more specialized than arima. Its regression-based standard 
errors assume that rho (p) is known rather than estimated. Because that assumption is untrue,

Number of obs = 
F( 1, 23) = 
Prob > F = 
R-squared
Adj R-squared = 
Root MSE

Q w (D <D
O) (V
Q
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the standard errors, tests, and confidence intervals given by prais tend to be anti­
conservative, especially in small samples, prais provides a Durbin-Watson statistic (d = 
1.789). In this example, the Durbin-Watson test agrees that after fitting the model, no 
significant first-order autocorrelation remains.

t. •
* .1.

lb 
b bi
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Basic Concepts and Tools

i

361

Some elementary concepts and tools, combined with the Stata capabilities described in earlier 
chapters, suffice to get started.

As mentioned in Chapters 2 and 3. we can create a simple type of proeram by writing any 
sequence of Stata commands in a text (ASCII) file. Stata's Do-file Edito?(click on Windrow - 

o-file Editor or the icon ) provides a convenient way to do this. After saving the do-file, 
we enter Stata and type a command with the form do filename that tells Stata to read 
Jilename.do and execute whatever commands it contains. More sophisticated programs are 
possible as well, making use of Stata's built-in programming language. Many of the commands 
used in previous chapters actually involve programs written in Stata. These programs might 
have originated either from Stata Corporation or from users who wanted something beyond 
Stata s built-in features to accomplish a particular task.

Stata programs can access all the existing features of Stata, call other programs that call 
other programs in turn, and use model-fitting aids including matrix algebra and maximum like­
lihood estimation. Whether our purposes are broad, such as adding new statistical techniques 
or narrowly specialized, such as managing a particular database, our ability to write programs 
in Stata greatly extends what we can do.

Substantial books (Stata Programming Reference Manual; Mata Reference Manual- 
Maximum Likelihood Estimation with Stata) have been written about Stata programming. This 
engaging topic is also the focus of penodic NetCourses (see www.stata.com) and a section of 
the L ser s Guide. The present chapter has the modest aim of introducing a few basic tools and 
giving examples that show how these tools can be used.

Do-files

Do-files are ASCII (text) files, created by Stata’s Do-file Editor, a word processor, or any other 
text editor. They are typically saved with a .do extension. The file can contain any sequence 
o legitimate Stata commands. In Stata, typing the following command causes Stata to read 
Jilename.do and execute the commands it contains:

. do filename

http://www.stata.com
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■

J

This distinction makes no difference to most users, because logit and logistic work 
with similar ease and syntax when called.

if

4 ■

I.

i

This sets a semicolon as the end-of-line delimiter, so that Stata does not consider a line finished 
until it encounters a semicolon. Setting the semicolon as delimiter permits a single command 
to extend over more than one physical line. Later, we can reset “carriage return" as the usual 
end-of-line delimiter by typing the following command:

# delimiterJ

Programs

Both do-files and ado-files might be viewed as types of programs, but Stata uses the word 
“program” in a narrower sense, to mean a sequence of commands stored in memory and 
executed by typing a particular program name. Do-files, ado-files, or commands typed 
interactively can define such programs. The definition begins with a statement that names the 
program. For example, to create a program named count5, we start with

program counts   

which logistic
C:\STATA\ado\base\1\logistic.ado 
*! version 3.1.9 01oct2002

Each command \n filename.do. including the last, must end with a hard return — unless we 
have reset the delimiter to some other character, through a # de limit command. For 
example.

Ado-files

Ado (automatic do) files are ASCII files containing sequences of Stata commands, much like 
do-files. The difference is that we need not type do filename in order to run an ado-file. 
Suppose we type the command
. clear

As with any command, Stata reads this and checks whether an intrinsic command by this name 
exists. If a clear command does not exist as part of the base Stata executable (and, in fact, 
it does not), then Stata next searches in its usual “ado" directories, trying to find a file named 
clear.ado. If Stata finds such a tile (as it should), it then executes whatever commands the file 
contains. Ado-files have the extension .ado. User-written programs commonly go in a 
directory named C:\ado\personaL whereas the hundreds of official Stata ado-files get installed 
in C:\stata\ado. Type sysdir to see a list of the directories Stata currently uses. Type 
help sysdir or help adopath for advice on changing them.

The which command reveals whether a given command really is an intrinsic, hardcoded 
Stata command or one defined by an ado-file; and if it is an ado-file, where that resides. For 
example, logit is a built-in command, but the logistic command is defined by an ado- 
file named logistic.ado:
. which logit 
built-in command:
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I

(0 in this example), place the macro name withini

i

146

k 

local iterate = 0
To refer to the contents of a local macro 

left and right single quotes. For example, 
display 'iterate*

0

Thus, to increase the value of iterate by one, we write 
local iterate = 'iterate* + 1

;ram. Finally, we give an end command.

Global Macros

Global macros are similar to local macros, but once defined, they remain in memory and can 
be used by other programs. To refer to a global macro’s contents, we preface the macro name 
with a dollar sign (instead of enclosing the name in left and right single quotes as done with 
local macros):

global distance = 73
display $distance * 2

Next should be the lines that actually define the progi
followed by a hard return:

end

Once Stata has read the program-definition commands, it retains that definition of the 
program in memory and will run it any time we type the program’s name as a command:

counts

Programs effectively make new commands available within Stata, so most users do not need 
to know whether a given command comes from Stata itself or from an ado-file-de fined program.

As we start to write a new program, we often create preliminary versions that are 
incomplete or just unsuccessful. The program drop command provides essential help 
here, allowing us to clear programs from memory so that we can define a new version For 
example, to clear program count5 from memory, type
• program drop counts

To clear all programs (but not the data) from memory, type
• program drop _all

Local Macros

Macros are names (up to 31 characters) that can stand for strings, program-defined results, or 
user-defined values. A local macro exists only within the program that defines it, and cannot 
be referred to in another program. To create a local macro named iterate, standing for the 
number 0, type
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I

I

Version

Stata s capabilities and features have changed over the years. Consequently, programs written 
for an older version of Stata might not run directly under the current version. The version 
command works around this problem so that old programs remain usable. Once we tell Stata 
for what version the program was written, Stata makes the necessary adjustments and the old 
program can run under a new version of Stata. For example, if we begin our program with the 
following statement. Stata interprets all the program’s commands as it would have in Stata 6: 

version 6

/// this part is the comment

1, contents(mean lived ///

Comments

Stata does not attempt to execute any line that begins with an asterisk. Such lines can therefore 
be used to insert comments and explanation into a program, or interactively during a Stata 
session. For example.

* This entire line is a comment.
Alternatively, we can include a comment within an executable line. The simplest way to do so 
is to place the comment after a double slash, / / (with at least one space before the double 
slash). For example, 

summarize income education // this part is the comment

A triple slash (also preceded by at least one space) indicates that what follows, to the end of the 
line, is a comment; but then the following physical line should be executed as a continuation 
of the first. For example, 

summarize income education 
occupation age

will be executed as if we had typed
summarize income education occupation age

With or without comments, the triple slash provides an easy way to include long command lines 
in a program. For example, the following lines would be read as one table command, even 
though they are separated by a hard return.

table gender kids school if contam 
median lived count lived)

If our program has more than a few long commands, however, the # de limit ; approach 
(described earlier; also see help delimit) might be easier to write and read.

It is also possible to include comments in the middle of a command line, bracketed by / * 
and */. For example,

summarize income /* this is the comment */ education occupation 

If one line ends with / * , and the next begins with * / , then Stata skips over the line break 
and reads both lines as a single command — another line-lengthening trick sometimes found 
in programs.

I ■ 

r



7 %

Introduction to Programming 365

I

I
execute the

J 

counts . Alternatively, we could use the 
....... .... . Then,

Looping

There are a number of ways to create program loops. One simple method employs the 
orvalues command. For example, the following program counts from 1 to 5.

* Program that -counts from one to five 
program counts 

version 8.0 
forvalues i = 1/5 { 

display 'i’

The foreach command takes 
consecutive numerical values, we 
could be variables, files, strings, or 
syntax of this command.

forvalues and foreach create loops that repeat for a pre-specified number of times 
If we want looping to continue until some other condition is met, the while command is 
useful. A section of program with the following general form will repeatedly 
commands within curly brackets, so long as expression evaluates to “true”:

}
end

By typing these commands, we define program < • - * <
Do-file Editor to save the same series of commands as an ASCII file named co Jnt5 "do 
typing the following causes Stata to read the file:

do counts

Either way, by defining program counts we make this available as a new command: 
counts

1
2
3
4
5

The command
forvalues i = 1/5 {

assigns to local macro i the consecutive integers from 1 through 5. The command 
display 'i’

shows the contents of this macro. The name i is arbitrary. A slightly different notation 
would allow us to count from 0 to 100 by fives (0, 5, 10,..., 100):

forvalues j = 0(5)100 {

Mh00St4Pmb?7rn Vacn7need nOt be integerS- T° C0Unt from 4 t0 5 by increments of .01 
(H.uu, 4.ui, 4.02,..., 5.00), write

forvalues k = 4(.01)5 {

Any lines containing valid Stata commands, between the opening and closing curly brackets { } 
wi l be executed repeatedly for each of the values specified. Note that nothing (on that line) 
follows the opening bracket, and that the closing bracket requires a line of its own.

a different approach. Instead of specifying a set of 
give a list of items for which iteration occurs. These items 

numerical values. Type help foreach to see the
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If ... else

}

! =
I

is
}

Arguments

The if and else commands tell a program to do one thing if an expression is true, and 
something else otherwise. They are set up as follows:

A second example of a while loop appears in the gossip, ado program described later in this 
chapter. The Programming Reference Manual contains more about programming loops.

As in previous examples, the closing bracket } should be on its own separate line, not at the 
end of a command line.

Programs define new commands. In some instances (as with the earlier example, counts ), 
we intend our command to do exactly the same thing each time it is used. Often, however, we 
need a command that is piodified by-arguments-such as variable names or options. There are

if expression { 
command A 
command B

■0
■

! I
i

1

}
else {

display "span

} 
command Z

i ■

i*
}
else {

command Z

while expression { 
command A 
command B

('spa.'.’ - l)/2 { 
ar. odd number”

i!

For example, the following program segment checks whether the content of local macro 
span is an odd number, and informs the user of the result.

if int ( 'span’, 2) 
display "span is NOT

an odd number”

When expression evaluates to “false,” the looping stops and Stata goes on to execute 
command Z. Parallel to our previous example, here is simple program that uses a while loop 
to display onscreen the iteration numbers from 1 through 6:

* Program thaz counts from one to six 
program count6 
version 8.C 
local iterate = 1 
while 'iterate’ <= 6 { 

display 'iterate' 
local iterate = 'iterate’ 
1 

end
+ 1
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observations with w

ZDvariable

I
resid

number'

the command line makes this program ’’sort-stable": it

i

J 

I

I 
j

Next, we use the newly-defined listresl command, followed by its four arguments. 
The first argument specifies they variable, the second x, the third how many observations to 
list, and the fourth gives the case identifier. In this example, our command asks for a list of 
observations that have the five largest absolute residuals.
• listresl life food 5 country

gsort -Absres
The option sortpreserve on 1‘
returns the data to their original order after the calculations are finished.

Dataset nations.dta, seen previously in Chapter 8, contains variables indicating life 
expectancy (life), per capita daily calories (food), and country' name (country) for 109 countries. 
We can open this file, and use it to demonstrate our new program. A do command runs do- 
file listresl.do, thereby defining the program listresl :

do listresl.do

The line args Yvar Xvar number id tells Stata that the command listresid 
should be followed by four arguments. These arguments could be numbers, variable names, 
or other strings separated by spaces. The first argument becomes the contents of a local macro 
named Yvar , the second a local macro named Xvar , and so forth. The program then uses 
the contents of these macros in other commands, such as the regression:

quietly regress 'Yvar’ 'Xvar*
The program calculates absolute residuals (Absres), and then uses the gsort command 

(followed by a minus sign before the variable name) to sort the data in high-to-low order, with 
missing values last:

two ways we can tell Stata how to read and understand a command line that includes arguments. 
The simplest of these is the args command.

The following do-file (listres 1 .do) defines a program that performs a two-variable 
regression, and then lists the observations with the largest absolute residuals.

* Perform simple regression and lis-
* largest absolute residuals.
* listresl Yvariable Xvariable # 
program listresl, sortpreserve

version 8.0 
args Yvar Xvar number-id 
quietly regress 'Yvar’ 'Xvar' 
capture drop Yhat 
capture drop Resid 
capture drop Absres 
quietly predict Yhat 
quietly predict Resid, 
quietly gen Absres = abs(Resid) 
gsort -Absres 
drop Absres 
list 'id' 'Yvar' Yhat Resid in 

end
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life Yhat

1

Syntax

[if] [in], Number(integer) [Id(string)]

if 'touse’

resid

Yhat Resid in l/'number’
I; ;■
II

Life expectancies are lower than predicted in Libya, Bhutan, and Malawi. Conversely, life 
expectancies in Panama and Ecuador are higher than predicted, based on food supplies.

i.
2 .
3.
4 .
5 .

+-------------
I country 
I 
I
I
I
I
I

Libya 
Bhutan 
Panama 
Malawi 
Ecuador

60
44
72
45
66

76.6901 
60.49577 
58.13118 
58.58232’ 
52.45305

'touse’
'touse ’ ,

1

The syntax command provides a more complicated but also more powerful way to read a 
command line. The following do-file named Ustres2.do is similar to our previous example, but 
it uses syntax instead of args:

Resid | --------- I 
-16.69011 | 
-16.49577 | 
13.86882 | 

-13.58232 | 
13.54695 |

listres2 has the same purpose as the earlier listresl: it performs regression, then 
lists observations with the largest absolute residuals. This newer version contains several 
improvements, however, made possible by the syntax command. It is not restricted to two- 
variable regression, as was listresl . Iistres2 will work with any number of 
predictor variables, including none (in which case, predicted values equal the mean ofy. and 
residuals are deviations from the mean). list res 2 permits optional if and in 
qualifiers. A variable identifying the observations is optional with listres2 , instead of 
being required as it was with listresl. For example, we could regress life expectancy on 
food and energy, while restricting our analysis to only those countries where per capita GNP 
is above 500 dollars:

Perform simple or multiple regression and list 
observations with # largest absolute residuals.
Iistres2 yvar xvarlist [if] [in], number(#) [id(varname 

program listres2, sortpreserve 
version 8.0 
syntax varlist(min=l) 

marksample touse 
quietly regress 'varlist' 
capture drop Yhat 
capture drop Resid 
capture drop Absres 
quietly predict Yhat if 
quietly predict Resid if 
quietly gen Absres = abs(Resid) 
gsort -Absres 
drop Absres 
list 'id' ' 1' 

end
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• do Hstres2.do

. Iistres2 life food energy if gnpcap > 500,

life Res i i

6. Panama 72 10.22211

I
[if] [in] ,

I are required to be an integer, and id is a string (such

Example Program: Moving Autoc o r re I a ti o n

DELETE LATER

and

4 

1.
2 .
3.
4 .
5 .

46 
4 5 
60 
55 
76

-15.34964 |
-14.85839 !
-13.62516 I
-12.9146 !
11.35978 j

.34964 

.85839 

. 6251 6
".9146

6 4.6 4 12 2

(Yvar and TIMEvar), 
2 user can ask to generate

n(6) i(country)

The preceding sections presented basic ideas and example short programs. In this section we 
apply those ideas to a slightly longer program that defines a new statistical procedure The 
procedure obtains moving autocorrelations through a time series, as proposed for ocean­
atmosphere data by Topliss (2001). The following do-file, gossip.do, defines a program that 
makes available a new command called gossip . Comments, in lines that begin with * or 
tn phrases set off by / / , explain what the program is doing. Indentation of lines has no effect 
on the program’s execution, but makes it easier for the programmer to read.
capture program drop gossip 
program gossip 
version 8.0
* Syntax requires
* the span of the

The syntax line in this example illustrates some general features of the command:
syntax varlist (17.1.1 = 1) [if] [in]. Number < integer) [Id(string)] 

The variable list fora listres2 command is required to contain at least one variablename 
(varlist(min=l) ). Square brackets denote optional arguments — in this example the 
if and m qualifiers, and also the id() option. Capitalization of initial letters for the 
options indicates the minimum abbreviation that can be used. Because the syntax line in 
our example specified Number (integer) Id (string). an actual command could be 
written:

user to specify two variables ( 
moving window. Optionally, the

// FOR WRITING & DEBUGGING;

. Iistres2 life food, number(6) id(country)

Or, equivalently,
* listres2 life food, n(6) i(country)

The contents of local macro number 
as country, a variable’s name).

This example also illustrates the marksample command, which marks the subsample 
(as qualified by if and in ) to be used in subsequent analyses.

The syntax of syntax is outlined in the Programming Manual. Experimentation and 
studying other programs help in gaining fluency with this command.

I country
I------------------
I YemenPDR
I YemenAR
I Libya
I S_Africa
I HongKong
I
I
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the second TIMEvar.

i

}
"'graph

comments
so

a h missing values exist
l» ••

■Yvar’ (span ' span')"
}

As the comments note, gossip requires time series (tsset) data. From an existing 
time series variable, gossip calculates a second time series consisting of lag-1 
autocorrelation coefficients within a moving window of observations — for example, a moving 
9-year span. Dataset nao.dta contains North Atlantic climate time series that can be used for 
illustration:

} 
if

a
rC1

} 
end

} 
if

i;

I1

cause
as if

'span'
span' 2) 

-'scan'
' s p a n 1 o '

in ' spanlc'/'spanhi', lag(l) 
= el(r(AC),1,1) in 'spanmid'

holding the observation number at the 
window. spanmid holds the observation 

this window.

:: draw a graph, or both, 
r.teger) [GENerate (string) GRaphj

* a new variable holding autcccrrelations, 
syntax varlist(min=l max=2 numeric), SPan(i 
if int('span'/2) != ('span' - 1)/2 <

display as error "Span must be an odd integer"

}
if "'graph'" != "" {

* The following graph command illustrates the use of comments to
* Stata to skip over line breaks, so it reads the next two lines
* they were one.

graph twoway spike 'NEW.’AR'
ytitle("First-order autocorrelations of

"'generate'" != "" { 
rename 'NEWVAR' 'generate' 
label variable 'generate' /: /

"First-order autocorrelations of

'varlist' becomes Yvar,
} 
else {
* The first variable in

tokenize 'varlist' 
local Yvar '1' 
local TIMEvar '2' 

tempvar NEWVAR 
quietly gen 'NEWVAR' 
local miss = 0

* spanlo and spanhi are local macros
* low and high ends of a particular
* number at the center of

local spanlo = 0 
local spanhi = 
local spanmid = int( 
while 'spanlo' <= 

local spanhi = 'span' - 
local spanlo = 'spanlc' 
local spanmid = 'spanmid' + 1

* The next lines check whether missing values exist within the window.
* If they do exist, then no autocorrelation is calculated and we
* move on to the next window. Users are informed that this occurred.

quietly summ 'Yvar' in ’spanlo'/’spanhi’ 
if r(N) != 'span' { 

local miss = 1

'miss' == 1 { 
display as error "Cauticn:

}
* The value of NEWVAR in observation 'spanmid' is set equal to the first
* row, first column (1,1) element of the row vector of autocorrelations
* r(AC) saved by corrgram.

else {
quietly corrgram 'Yvar'
quietly replace 'NEWVAR'

U se r s are

'TIMtvar', yline(O) ///
'Yvar' (span span*)
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(??.?* of memory free)

variable name variable label

I
Sorted by: year

Figure 14.1

1850 1900 1950 2000Year

I I
I I

display 
format

value 
label

5
3, 4 96

ii
storage 

type
year 
wNAO 
wNA04 
temp 
t emp4

2 o Q E

%ty
%9.0g

0g
%?. 0g
%9.0g

vars :
size:

float 
float
float

. graph twoway line temp year, cipattern(solid) clwidth(vthin) 
line temp4 year, cipattern(solid) clwidth(thick) 
, ytitle("Temperature, degrees C") legend(off)

The variable temp records annual mean air temperatures at Stykkisholmur in west Iceland 
from 1841 to 1999. temp4 contains smoothed values of temp (see Chapter 13). Figure 14.1 
graphs these two time series. To visually distinguish between raw {temp) and smoothed 
{temp4) variables, we connect the former with very thin lines, clwidth (vthin), and the 
latter with thick lines, clwidth (thick). Type help linewidthstyle for a list of 
other line-width choices.

To calculate and graph a series of autocorrelations of temp, within a moving window of 9 
years, we type the following commands. They produce the graph shown in Figure 14.2.

Year
Winter NAO
Winter NAO smoothed
Xear. air temperature (C)
Mean air temperature smoothed

Contains data from C:\data\nao.dta 
obs: 159 North Atlantic Oscillation & 

meat, air temperature at 
Stykkisholmur, Iceland

1 Aug 2005 10:50
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do gossip. do

. gossip temp year, span (9) generate(autotemp) graph

Figure 14.2

!•

, ,1,.;

n ■!

1850 1950 20001900
Year

In addition to drawing Figure 14.2. gossip created a new variable named autotemp\
describe autotemp

variable name variable label

* ?.0gautotemp

list year temp autotemp in 1/10
f

autotemptemp

J !

autotemp values are missing for the first four years (1841 to 1844). In 1845, the autotemp 
value (-.2324837) equals the lag-1 autocorrelation of temp over the 9-year span from 1841 to 
1849. This is the same coefficient we would obtain by typing the following command:

storage 
type

value 
label

IOCD

s-

6 .
7 .
8 .
9.

10 .

I
I
I
I
I
I

4.28
4.45
2.32
3.27
3.23

display 
format

1
3
4 
c

1846
184 7
184 8
1849
1850

1841
1842
1843
184 4
1845

.1683512 

.5194607 

.5175247
-.03303 
.0181154

i

2.73 
4.34 
2.97 
3.41 
3.62

I
.IL.

IlH
I ■

irst-rder autocorrelations of 
temp •,span 9)

.... I III,

I
I

, li,E
0)

c 
O
ro o
Q)

O 
o

ro
o

■p 
o
co

II III

I1 ! )’ I f'l
T

III: 
i

Ikp

lii
8 r;

I year
I
I
I
I

. I 

. I 

. I 
-.2324837 | 

I 
I 
I 
I 
I 
I

in 
.iih 

iliSlil ill
■

I

!hIP
Ik'
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Q

1

Ado-Filei

2.

can use gossip as a regular command within Stata. A listing of

. corrgram temp in 1/9, lag(l)

LAG AZ ?AC

J 

-1 0
[Autocorrelation]

1-1 0 1
(Partial Autocor]

-i

(“-0883512) e<?uals the lag-> autocorrelation of temp over the 9 years from 
1S42 to 1850. and so on through the data, autotemp values are missing for the last four years 
in the data (1996 to 1999), as they are for the first four.

The pronounced Arctic warming of the 1920s, visible in the temperatures of Figure 14.1 
mamfestsm Figure 14.2 as a period of consistently positive autocorrelations. A briefer period 
of positive autocorrelations in the 1960s coincides with a cooling climate. Topliss (2001) 
suggests interpretation of such autocorrelations as indicators of changing feedbacks in ocean­
atmosphere systems.

The do-file gossip.do was written incrementally, starting with input components such as 
t le syntax statement and span macros, running the do-file to check how these work and then 
adding other components. Not all of the trial runs produced satisfactory results. Typing the 
following command causes Stata to display programs line-by-line as they execute, so we can 
see exactly where an error occurs:

set trace on

Later, we can mm this feature off by typing
set trace off

gossip.do contains a first line, capture program drop gossip, that discards the 
program from memory before defining it again. This is helpful during the writina and 
debugging stage, when a previous version of our program might have been incomplete or 
incorrect. Such lines should be deleted once the program is mature, however. The next section 
describes further steps toward making gossip available as a regular Stata command.

Once we believe our do-file defines a program that we will want to use again, we can create an 
ado-file to make it available like any other Stata command. For the previous example 
gossip.do, the change involves two steps:
1. With the Do-file Editor, delete the initial “DELETE LATER” line that had been inserted 

to streamline the program writing and debugging phase. We can also delete the comment 
lines. Doing so removes useful information, but it makes the program more compact and 
easier to read.
Save our modified file, renaming it to have an .ado extension (for example, gossip ado) in 
a new directory. The recommended location is in C:\ado\personal; you might need to create 
this directory and subdirectory if they do not already exist. Other locations are possible, 
but review the User’s Manual section on “Where does Stata look for ado-files?” before 
proceeding.

Once this is done, we
gossip.ado follows.

Prob>Q
.66885 0.4135-0.22-25 -0.2398
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Statistics with Stata .iT’CM)

I

= c a n h i '

}
if

::ewvap. •

missir.g values exist"j'

'span') "(span

Statistics with Stata (2304)

1
5
I

I r

* !
* !

}
else {

quietly corrgram 
quietly replace

"'graph'" != "" { 
graph twoway spike 'JEWVAR' ' TIXEvar' , ylir.e(O) 

ytitle("First-order autocorrelations of

Oncegossip.ado has been saved in the C:\ado\personal directory, the command gossip 
could be used at any time. If we are following the steps in this chapter, which previously

///
‘Yvar' (span ' span’)")

Yva r’ in
XEWVAR' =

The program could be refined further to make it more flexible, elegant, and user-friendly. 
Note the inclusion ofcomments stating the source and “version 2.0” in the first two lines, which 
both begin * ! . The comment refers to version 2.0 ofgossip.ado, not Stata (an earlier version 
of gossip.ado appeared in a previous edition of this book). The Stata version suitable for this 
program is specified as 8.0 by the version command a few lines later. Although the *1 
comments do not affect how the program runs, they are visible to a which command:
. which gossip
c:\ado\personal\gossip.ado

version 2.0
L. Hamilton,

}
if 'miss’ == 1 {

display as error "Caution:

' =t =r.lo ' / ' spanhi ', lag(l) 
el r(AC),l,l) in ' spar.r.id ’

*! version 2.0 
’! 1. Hamilton,
program gossip 
version 8.0 
syntax varlist (min = l max=2 numeric), SPa.n (integer) [GENerate (string) GRaphl 
it ir.t ( ' span ' '2 ) != (-span’ - 1)/2 {

display as error "Span must be an odd integer"

an' {
+ 'spanlc' 

spar.lo' + 1 
'spanmid' + 1 

in 'spanlo'

i
- f " generate’” ! = 

rename '::Ea_.7AR’ 
lac-el variable 

"First-order
generate' 

generate' ‘
autttorrelations :f 'Yvar'

} 
else { 

token!ze ’varlist' 
local Yvar '1' 
local TIMEvar 2' 

tempvar NEWVAR 
quietly ger. ’ NEWVAR ’ = . 
local miss = 0 
local spanlo = 0 
local spanhi = 'span' 
local spanmid = int ( ' span'/2) 
while 'spanlo' <= _N -'s: 

local spanhi = span' 
local spanlo = 
local spanmid = 
quietly summ 'Yvar' 
if r (N) != ‘span’ { 

local miss = 1
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. gossip wNAO year, span(15) graph

Help File

help for gossip L. HamiltonI
Moving first-order autocorrelations
gossip yvar tir.evar, span(#) [ generate (newvar) graph ]
Description

Options

creates

i
I

T jI

span(#) 
calculating autocorrelations. 
# should be an odd integer.

gen(newvar) creates a new variable holding the 
autocorrelation coefficients.

specifies the width of the window for
This option is required;

defined a preliminary version of gossip , then before running the new ado-file version we 
should drop the old definition from memory by typing
. program drop gossip

We are now prepared tp run the final, ado-file version. To see a graph of span-15 
autocorrelations of variable wNAO from dataset nao.dta, for example, we would simply open 
nao.dta and type

Help files are an integral aspect of using Stata. For a user-written program such as gossip.ado, 
they become even more important because no documentation exists in the printed manuals. We 
can write a help file for gossip.ado by using Stata’s Do-file Editor to create a texi file named 
gossip.hlp. This help file should be saved in the same ado-file directory (for example, 
C:\ado personal) as gossip.ado.

Any text file, saved in one of Stata’s recognized ado-file directories with a name of the 
formfilename.hlp. will be displayed onscreen by Stata when we type help filename. For 
example, we might write the following in the Do-file Editor, and save it in directory 
C:\ado personalas file gossipl.hlp. Typing help gossipl at any time would then cause 
Stata to display the text.

calculates firsT-order autocorrelations of time series
yvar, within a moving window of span #. For example, if we 
specify span(7) gen (new), then the first
through 3rd values of new are missing. The 4th value of new 
equals the lag-1 autocorrelation of yvar across observations 1 
through 7. The 5th value of new equals the lag-1 autocorrelation 
of yvar across observations 2 through 8, and so forth. The last 
3 values of new are missing. See Topliss (2001) for a rationale 
and applications of this statistic to atmosphere-ocean data. 
Statistics with Stata (2004) discusses the gossip program itself.
gossip requires rsset data. timevar is the time 
variable tc be used for graphing.
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■graph vs.

Examples

Lawrence C. 2004 . Statistics with Stata. Pacific Grove,

I

{title:Moving first-order autocorrelations}
{p 8 12}{cmd:gossip} {it:yvar timevar} {cmd:,} {cmdab:sp:an}{cmd:(}

[ {cmdab:gen:erate}{cmd:(}{it:newvar}{cmd:)}

{title:Description}

{it:timevar} is the time

{title:Options}

!

p
i.

l!l

r
through 7. 
of {it:yvar}

{it:#}{cmd:)} [ 
{cmdab:gr:aph} ]

autocorrelations of time series moving window of span {it:#}.

A conceptual approach to 
, The

r

requests a spike plot of lag-1 autocorrelations timevar.

1
- {

i

calculating autocorrelations, 
an odd integer.

"Climate variability I: ' ■ '
In Abstracts for AGU Chapman Conference, 

Nov. 28 - Dec 1, 2000, Ourense, Spain.

Nicer help files containing links, text formatting, dialog boxes, and other features can be 
designed using Stata Markup and Control Language (SMCL). All official Stata help files, as 
well as log files and onscreen results, employ SMCL. The following is an SMCL version of 
the help file for gossip. Once this file has been saved in C:\ado\personal with the file name 
gossip.hlp. typing help gossip will produce a readable and official-looking display.

{smcl}
{* laug2003}{...}
{hline}
help for {hi:gossip}{right:(L. Hamilton)} {hline}

s til I

Hamilton, 
CA: Duxbury.

. gossip water month, span(13) graph

. gossip water month, span (9) gen (autowater)

. gossip water month, span (17) gen (autowater) graph
References

through 3rd values of {it:new} are missing.
equals the lag-1 autocorrelation of {it:yvar}  

The 5th value of {it:new} equals the lag-1 autocorrelation 
across observations 2 through 8, and so forth. The last

3 values of {it:new} are missing. See Topliss (2001) for a rationale 
and applications of this statistic to atmosphere-ocean data.
{browse "http://www.stata.com/bockstore/sws.html":Statistics with Stata}
(2004) discusses the {cmd:gossip} program itself.{p end}

{p}{cmd:gossip} requires {cmd:tsset} data.
variable to be used for graphing. -;p_end}

{p^0 4}{cmd:span(}{it:#}{cmd:)} specifies the width of the window for 
This option is required; {it:#} should be

{p}{cmd:gossip} calculates first-order
{it:yvar}, within a moving window of span {it:#}. For example, if we 

^cnJd:sPan O'7 {cmd:) } {cmd: gen (} {it: new} {cmd:) }, then the first 
The 4th value of {it.-new} 
across observations 1

Topliss, 3renda J. 2001. 
ocean-atmosphere feedback." 
North Atlantic Oscillation,

http://www.stata.com/bockstore/sws.html%2522:Statistics
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i a new variable

a spike plot of lag-1

{title:Examples}

gossip water month, span(9) gen(autcwater)}{c 
C C 1 TA T.T / -5 —» v

{title:References}

{cmd:gossip}

I

{?}

{browse

4

I
I

{it:yvar}
{cmdab:sp:an}

brackets {} enclose SMCL codes, many of which have the form 
{command 
interpreted.

as SMCL. Curly 
or 

are

{hline}
{hi:gossip}
{title:Moving...} 
{right:L Hamilton} 
{p 8 12}

I

{p 0 4}{cmdrgen(}{it:newvar}{cmd:)} creates 
autocorrelation coefficients.

The help file begins with {smcl}, which tells Stata to process the file

.... — >—j {cczuiiar.d: text.} 
arguments : text}. The following examples illustrate how these codes

comm16 ^°8rammin8 Manual supplies details about using these and many other SMCL

{p 0 4}{cmd:graph} requests 
{it:timevar}.

"Climate variability Z: 
—In Abstracts f:r 

, Nov. 26 - Eec

autoccrrelatizr.s vs.

as a paragraph, until Terminated by

{p 8 12}{inp:, gossip water month, span(13) graph}{p end}
{p 8 12} {inp:, ’’tier rr.cn.th — "" ■
<P 8 12Hinp:. gossip water month,

Draw a horizontal line.
Highlight the text “gossip”.
Display the text “Moving ..as a title.
Right-justify the text “L. Hamilton”.
Format the following text as a paragraph, with the first line 
indented 8 columns and subsequent lines indented 12.
Display the text “gossip” as a command. Thai is. show “gossip” 
with whatever colors and font attributes are presently defined as 
appropriate for a command.
Display the text “yvar” in italics.
Display “span” as a command, with the letters “sp” marked as the 
minimum abbreviation.
Format the following text 
{p_end}.

http://www.stata.com/bookstore/sws.html":Stat l s--- =
Link the text “Statistics with Stata” to the wed address (URL) 
http://www.stata.com/bookstore/sws.html . Clicking on the words
Statistics with Stata” should then launch your browser and 

connect it to this URL.

A co.':eptu=.l 
AST C?. = pmar. 
1/ 2C::, Ourense,

wi:.-. Staza}.
{p 0 4}Hamilton, Lawrence C. 2004.
{browse "http://www.stata.com/bookstore/sws.html”:Szatiszic~ 
Pacific Grove, CA: Duxbury.{p end}

{p 0 4}Topliss, Brenda J. 2001. ’■Cll...
approach to ocear.-atmosphere feedback." I.. 
Conference, The North Atlantic Oscillation, 
Spain, citation.{p_end}

. . _:_enz
span(17) gen(autowater) graph p end-

http://www.stata.com/bookstore/sws.html%2522:Stat
http://www.stata.com/bookstore/sws.html
http://www.stata.com/bookstore/sws.html%25e2%2580%259d:Szatiszic%7E
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Matrix Algebra

i l-
b!

★

I ★

obtained by

'crossY'
which are the contents of b.

I

••/I

★ 
★

I1

Comments explain each command in olsl.do. A comment-free version named ols2.do 
(following) gives a clearer view of the matrix commands:

I

I-
IP

; ■ !

1
i d

r

X’X
= 'crossYX'[2...,2.. .]

rows 2 through K, and column 1 from crossYX:

Matrix algebra provides essential tools for statistical modeling. Stata’s matrix commands and 
matrix programming language (Mata) are too diverse to describe adequately here; the subject 
tequires its own reference manual (Mata Reference Manual), in addition to many pages in the 
Programming Reference Manual and User’s Guide. Consult these sources for information 
about the Mata language, which is new with Stata 9. The examples in this section illustrate 
earlier matrix commands, which also still work (hence the placement of version 8.0 
commands at the start of each program).

The built-in Stata command regre s s performs ordinary least squares (OLS) regression, 
among other things. But as an exercise, we could write an OLS program ourselves, olsl.do 
(following) defines a primitive regression program that does nothing except calculate and 
display the vector ofestimated regression coefficients according to the familiar OLS equation:

b = (X'X)-'X'y
A very simple program, ”olsl” estimates linear regression

* coefficients using ordinary least squares (OLS). program olsl
version 8.0

* The syntax allows only for a variable list with one or more
* numeric variables.

syntax varlist(min=l numeric)
"tempname...” assigns names to temporary matrices to be used in this 
program. When olsl has finished, these matrices will be dropped.
tempname crossYX crossX crossY b

"matrix accum..." forms a cross-product matrix. The K variables in 
varlist, and the N observations with nonmissing values on all K variables, 
comprise an N row, K column data matrix we might call yX.
The cross product matrix crossYX equals the transpose of yX times yX.
Written algebraically:

crossYX = (yX)’yX
quietly matrix accum 'crossYX' = 'varlist'

Matrix crossX extracts rows 2 through K, and columns 2 through K, from crossYX:
crossX =

matrix 'crossX'
* Column vector crossY extracts

crossY = X’y
matrix 'crossY' = 'crossYX'[2..., 1 ]

The column vector b contains OLS regression coefficients, 
the classic estimating equation: 

b = inverse(X'X)X'y 
matrix 'b' = symir.v (' crossX')

Finally, we list the coefficient estimates, 
matrix list 'b' 

end
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reactor.dta

(99.?* of memory free)

variable name variable label

Sorted by: start

I
regress decom capacity years

SS df MS
2)

4 690.8.* 4 1172.70

Coef. Std. Err . t P> ! 11 [95% Conf. Interval]

Our home-brewed program ols2.do yields exactly the same regression coefficients:

4 

II

site 
decom 
capacity 
years 
start 
close

storage 
type

. 1758739
3.899314

-11.39963

2
2

value 
label

0.019 
0.005 
0.119

.0692653
2.762085
-30.03146

.2824825
5.036543
7.23219

Contains data from c:\dar= 
obs: 5

vars :
size :

4666.16571
24.6342883

%14s 
*8.:g 
% = .:g 
% 9 . g 
%8. jg 
%6 . 2g

2333.08286
12.3171442

Reactor site
Decommissioning cost, millions 
Generating capacity, megawatts 
Years in operation
Year operations started
Year operations closed

I

Source | ------ +

. 0247774 

.2643087 
4.330311

7.10
14.75
-2.63

str 1 4 
byte 
in t 
byte
int

disc lay 
fcrmat

£
131

5
189.42
0.0053
0.9947
0.9895
3.5096

capacity | 
years | 
_cons |

decom |

Total |

Model | 
Residual | -------- +

Reactor decommissioning costs 
(from Brown et al. 1986)

1 Aug 2005 10:50

The cost of decommissioning a reactor increases with its generating capacity and with the 
number of years in operation, as can be seen by using regress:

Neitherolsl.do nor olsl.do make any provision for in or if qualifiers, syntax errors, 
or options. They also do not calculate standard errors, confidence intervals, or the other 
ancillary statistics we usually want with regression. To see just what they do accomplish, we 
will analyze a small dataset on nuclear power plants (reactor.dta):

Number cf 
F ( 2,
Frcb F 
R-squared 
Adj R-squared = 
Root MSE

program ols2
version 8.0
syntax varlist(min=l numeric)
tempname crossYX crcssX crossY b
quietly matrix accum 'crossYX' = 'varlist' 
matrix 'crossX' = 'crossYX'[2..., 2... ] 
matrix 'crossY' = 'crossYX'[2..., 1] 
matrix 'b' = syminv('crossX') * 'crossY' 
matrix list 'b' 

end
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. do ols2.do

. ols2 decom capacity years

000003 [3Z1]

more complete OLS regress!:.' program.

[in] [if] i. Level integer SS_level)]

if

1)

b'
V' ' if ’

and 99 in - * ive."

level('level’)

Because ols3.ado is an ado-file, we can simply type ols3 as a command:
. ols3 decom capacity years

Coef. Std. ?>! t [95*Er r . onf. Interval]

ols3.ado contains familiar elements including syntax and marksample commands, 
as well as matrix operations built upon those seen earlier in ols 1.do and ols2.do. Note the

capacity 
years 
cons

. 1758739
3.899314

-11.39963

. 0247774 

.2643087
4.330311

.2824825
5.036543
7.23219

decom 
.1758739 

3.8993139 
-11.399633

('crossYX' [1,1] - hat'[l,i:) 
obs (' nobs ' ) depnarr.e ( ’ 1 ’)

7.10
14.75
-2.63

0.019
0.005
0.119

.0692653
2."62085

-30.03146

capacity I 
years | 
_cons |

Although its results are correct, the minimalist ols2 program lacks many features we 
would want in a useful modeling command. The following ado-file. ols3.ado. defines an 
improved program named ols3 . This program permits in and if qualifiers, and 
optionally allows specification of the level for confidence intervals. It calculates and neatly 
displays regression coefficients in a table with their standard errors, t tests, and confidence 
intervals.

}
ereturn display, 

end

decom I

local df = 
matrix 
matrix 
matrix 
matrix 
matrix 
ereturn post

esample('touse')
ereturn local depvar " ' 1 ’ "
ereturn local cmd "ols3"
if 'level’ < 10 | 'level' > 99 {

display as error ’’level ( ) must be between 10 
exit 198

*! version 2.0 laug2003 
*! Matrix demonstration: 
program ols3, eclass 

version 8.0 
syntax varlist(min=l numeric) 
marksample touse 
tokenize "'varlist'" 
tempname crossYX crossX crossY b hat V 
quietly matrix accum 'crossYX' = 'varlist' 
local nobs = r(N)

'nobs' - (rowsof('crossYX') 
crossX' = 'crossYX' [2. . . , 2 . . . ] 
crossY' = 'crossYX' [2 ...,1]

= (syminv ('crossX') * 'crossY')' 
hat' = 'b' * 'crossY'

= syminv ('crossX') * 
'b' 'V, dof('df')
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I

e() designations. After the previous ols3

scalars:

macros:

matrices:
3

functions:
e(sample)

. matrix list e(b)

yi

■ matrix list e(V)

years c c n s

-.342626 18.751531

I obs ( nobs ' ) depname('1’) ///

() results, including the coefficient vector (b)

e (N) = 
e (df r) =

'crossY ’ ) 1

e-class, indicating that this is a statistical model-

II

I
I

e (b) [1,3] 
capacity 
.1758733

e (b) :
e(V) :

5
2

_cons
< a o c. q

capacity 
years 
cons

results from e-class programs remain in memory until the next e-class command, 
r () designations,

. display e(N)
5

years
3.8993133

program ols3, eclass

E-class programs store their results with < 
command, these have the following contents: 
. ereturn list

use of a right single quote ( ' ) as the “matrix transpose” operator. We write the transpose of 
the coefficients vector (syminv ('crossX ' ) * ' crossY') as follows:

(syminv ( 'crossX’) *

The ols3 program is defined as
estimation command:

symmetric e(V):3,3] 
capacity 

. 0 0 0 613 32 
-.00216732 
-.01492755

The e () i ' ~
In contrast, r-class programs such as summarize store their results with 
and these remain in memory only until the next e- or r-class command.

Several ereturn lines in olsi.ado save the e () results, then use these in the output 
display: r

1 X 
3x3

e(cmd) : "cis3" 
e(depvar) : "decom"

ereturn post 'b’ 'V, dof('df)
esample('touse’)

The above command sets the contents of e (' ' ‘ 2
and the variance-covariance matrix (V). This makes all the° post'-esti^tion features 
detailed in help estimates and help postest available. Options specify the 
residual degrees of freedom ( df ), number of observations used in estimation ( nobs ),
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fi

Bootstrapping

8

- re-ory free)

variable label I%
I %e.

Sorted by:

'■

island 
area 
birds 
plants

vars :
size :

tail t probabilities, and confidence intervals based 
command line (or defaulting to Q?%).

storage 
type

i-

strlS 
float 
byte 
in t

value 
label

■ :

-
%

j

5

-7

1 ;

■

I

x ac.f ic _s 1 ar.d biodiversi ty 
(Cox & Moore 1993)

1 Aug 2005 10:50

Contains data from c:\data isl 
obs :

display 
format

a process of repeatedly drawing random samples, with replacement. 
Instead of trusting theory' to describe the sampling distribution of an

r
rri

V

4
208 (99.9* of

Bootstrapping refers to 
from the data at hand.
estimator, we approximate that distribution empirically. Drawing k bootstrap samples of size 
n (from an original sample also size n) yields k new estimates. The distribution of these 
bootstrap estimates provides an empirical basis for estimating standard errors or confidence 
intervals (Efron and Tibshirani 1986: for an introduction, see Stine in Fox and Lons 1990). 
Bootstrapping seems most attractive in situations where the statistic of interest is theoretically 
intractable, or where the usual theory regarding that statistic rests on untenable assumptions.

Unlike Monte Carlo simulations, which fabricate their data, bootstrapping typically works 
from real data. For illustration, we tum to islands.dta, containing area and biodiversity­
measures for eight Pacific Island groups (from Cox and Moore 1993).

variable name

Island group
Land area, kmA2
Number of bird genera
Number flowering plant genera

dependent variable name ( ' 1' . meaning the contents of the first macro obtained when we 
tokenize varlist ). and estimation sample marker (touse ).

ereturn local depvar " ’ i • ••

This command sets the name of the dependent variable, macro 1 after tokenize 
varlist, to be the contents of macro e (depvar)

ereturn local and "ols3"
This sets the name of the command, ols3 , as the contents of macro e (cmd) 

ereturn display, level ( ' 1 ee 1 ' )

The ereturn display command displays the coefficient table based on our previous 
ere turn post . This table follows a standard Stata fonnat: its first two columns 
contain coefficient estimates (from b ) and their standard errors (square roots of diagonal 
elements from V). Further columns are / statistics (first column divided by second), two- 
tail t probabilities, and confidence intervals based on the level specified in the ols3

Suppose we wish to form a confidence interval for the mean number of bird genera. The 
usual confidence interval for a mean derives from a normality assumption. We might hesitate 
to make this assumption, however, given the skewed distribution that, even in this tiny sample 
(n — 8), almost leads us to reject normality: 
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sktest birds

Pr (Skewness) Pr(Kurtosis) adj chi2(2)

0.0" 9 0.181 4.75 0.0928

Number of observationsr (N)

Meanr (mean)

Skewnessr(skewness)

Minimumr(min)

Maximumr (max)

r (p50)

r(Var)

Sumr(sum)

Standard deviationr (s d)

I

. bs "summarize birds, detail" "r(mean)", rep(1000) saving(bootl)

Warning:

are

Bootstrap statist!

Variable Reps Observed Bias Std. Err . [95% Conf. Interval]
I 1000 47.625 -.475875 12.39088

I Note:

50th percentile or median 
Variance

Number of obs 
Replications

23.30986
25.75

27
71.94014
74.8125
78.25

8
1000

(N)
(P)

(BC)

command: 
statistic:

N 
p 
BC

= normal
= percentile
= bias-corrected

If the assumption is not true, p--- T'--_
the observations that are to be excluded, 
memory contains only the relevant data.

Variable I
birds |

bs_l | 
I 
I

summarize birds , detail
_bs_l = r(mean)

Stored results simplify the job of bootstrapping any statistic. To obtain bootstrap 
confidence intervals for the mean of birds, based on 1,000 resamplings, and save the results in 
new file boot 1 .dta, type the following command. The output includes a note warning about the 
potential problem of missing values, but that does not apply to these data.

Since summarize is not an estimation command or does not set 
e'sample), bootstrap has no way to determine which observations 
used in calculating the statistics and so assumes that all 
observations are used. This means no observations will be excluded 
from the resampling due to missing values or other reasons.

tests for Normality
------  joint -----

Prob>chi2

Skewness .-'Kurtosis

press Break, save the data, and drop 
------- Be sure the dataset in

Bootstrapping provides a more empirical approach to forming confidence intervals. An r- 
class command, summarize, detail unobtrusively stores its results as a series of 
macros. Some of these macros are:
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Obs Mean [95* Conf. Intervalj

8 47.625 13.38034 15.38552 79.26448

bootstrap sample.

detail

variable label
bs 1 float %9. Og r (mean)

Sorted by:

storage 
type

display 
format

value 
label

rep (1000) 

saving(bootl)

f

I jI 
||i;

r

-

I- ;:!

bs: summarize birds, 
1 Aug 2005 15:10

’i 
j *

li1

Std. Err.Variable | 
------------- + 

birds I

The bs command states in double quotes what analysis is to be bootstrapped ( "summ 
birds, detail” ). Following this comes the statistic to be bootstrapped, likewise in its 
own double quotes ( "r (mean) " ). More than one statistic could be listed, each separated by 
a space. The example above specifies two options:

Calls for 1,000 repetitions, or drawing 1,000 bootstrap samples.
Saves the 1,000 bootstrap means in a new dataset named bootl.dta.

variable name

Contains data from c:\data\bootl.dta
obs: 1,000

vars: 1
s^ze: 8,000 (99.9% of memory free)

The bs results table shows the number of repetitions perfonned and the “observed” 
(original-sample) value of the statistic being bootstrapped — in this case, the mean birds value 
47.625. The table also shows estimates of bias, standard error, and three types of confidence 
intervals. “Bias” here refers to the mean of the k bootstrap values of our statistic (for example, 
the mean of the 1,000 bootstrap means of birds), minus the observed statistic. The estimated 
standard error equals the standard deviation of the k bootstrap statistic values (for example, the 
standard deviation ofthe 1,000 bootstrap means of birds). This bootstrap standard error( 12.39) 
is less than the conventional standard error (13.38) calculated by ci :
. ci birds

Normal-approximation (N) confidence intervals in the bs table are obtained as follows: 
observed sample statistic ± t x bootstrap standard error

where t is chosen from the theoretical t distribution with k - 1 degrees of freedom. Their use 
is recommended when the bootstrap distribution appears unbiased and approximately normal.

Percentile (P) confidence intervals simply use percentiles ofthe bootstrap distribution (for 
a 95% interval, the 2.5th and 97.5th percentiles) as lower and upper bounds. These might be 
appropriate when the bootstrap distribution appears unbiased but nonnormal.

The bias-corrected (BC) interval also employs percentiles ofthe bootstrap distribution, but 
chooses these percentiles followinga normal-theory adjustment for the proportion of bootstrap 
values less than or equal to the observed statistic. When substantial bias exists (by one 
guideline, when bias exceeds 25% of one standard error), these intervals might be preferred.

Since we saved the bootstrap results in a file named bootl.dta, we can retrieve this and 
examine the bootstrap distribution more closely if desired. The saving (bootl) option 
created a dataset with 1.000 observations and a variable named _bs_l, holding the mean of each
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summarize

Variable I Obs Mean Min Max

10CO 47.14912 12.39088 14.625 92.5

Figure 14.347.635

i

r(mean)

1 

w CN 
c o 
<D 
Q

bs 1 |

Std. Dev.

Biologists have observed that biodiversity, or the number of different kinds of plants and 
animals, tends to increase with island size. In islands.dta, we have data to test this proposition 
with respect to birds and flowering plants. As expected, a strong linear relationship exists 
between birds and area'.

Note that the standard deviation of these 1,000 bootstrap means equals the standard error 
(12.82) shown earlier in the bs results table. The mean of the 1,000 means minus the 
observed (original sample) mean equals the bias:

47.14912 -47.625 = -.47588
Figure 14.3 shows the distribution of these 1,000 sample means, with the original-sample 

mean (47.625) marked by a vertical line. The distribution exhibits mild positive skew, but is 
not far from a theoretical normal curve.
• histogram _bs_l , norm bcolor(gslO) xaxis (1 2) xline(47.625) 

xlabel(47.635, axis(2)) xtitle("", axis(2))

20 40 60 80 100

/
/ 
z

: • • •
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■ regress birds area

Source SS df MS

10025.875 7 1432.26786

Coef . Std. Err. t P> 111 [95% Conf. Interval]

area" ”__b [ area]

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]
1000 .0026512 -.0000737 .0003345

1000 13.97169 .6230986 3.637705

Note :

i1

J

this regression 
intervals.

BC

. 0002077
3.79046

12.77
3.69

’0.000
0.010

Number of obs 
Replications

.0019947 

. 0019759 
.00199 

6.833275 
7.891942 
6.949539

.002143
4.696773

. 0033077 

. 0029066 

.0029246 
21.11011 
21.74494 
19.73012

.0031594
23.24662

8 
162.96 
0.0000 
0.9645 
0.9586 
7.7033

(N)
(P)

(BC)
(N)
(P)

(BC)

8
1000

command: 
statistics:

- normal
= percentile
= bias-corrected

9669.83255
356.042449

.0026512
13.97169

The bootstrap distribution < ~ ~~ *
Whereas the bootstrap distribution of means (Figi

An e-class command, 
chapter. It also creates or i
C [ v’arnazne] ) and standard errors (

Model |
Residual j

of coefficients on area is severely skewed (skewness = 4.12).
, ,, - n r jure 14.3) appeared approximately normal, and

^/UCed bootstraP confldence intervals narrower than the theoretical confidence interval, in 
i example bootstrapping obtains larger standard errors and wider confidence

resampling intact observations.
(resampling only the residuals) requires a bit more programming work.
commands make such do-it-yourself bootstrapping easier:
bsampie Draws a sample with replacement from the existing data, replacing the data in 

memory.

t

birds |

1

Total |

area 1
cons |

_bs_l |
I
I 

bs_2 |
I

1 9669.83255
6 . 59.3404082

Number of obs = 
F( lr 6) = 
Prob > F
R-squared =
Adj R-squared = 
Root MSE

regress birds area
_bs_l = _b[area]
_bs_2 = _b[_cons]

In a regression context, bs ordinarily performs what is called “data resampling,” or 
An alternative procedure called “residual resampling” 

Two additional

regress saves a set of e () results as noted earlier in this 
updates a set of system variables containing the model coefficients 

; _se [ varname]). To bootstrap the slope and y 
intercept from the previous regression, saving the results in file boot2.dta, type
• bs "regress birds area" ”_b[area] _b[_cons]", rep(1000) 

saving(boot2)
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bootstrap

Monte Carlo Simulation
I

I

w .

.05

I

-fl

1
I

I

Runs a user-defined program reps () times on bootstrap samples of size 
size().

The Base Reference Manual gives examples of programs for use with bootstrap

sample containing n=100 observations of variables x and 
x is standard normal 
w is contaminated normal

r(wmean) r(wmedian)

Monte Carlo simulations generate and analyze many samples of artificial data, allowing 
researchers to investigate the long-run behaviOr.of their statistical techniques. The s imnt at-p 
command makes designing a simulation straightforward so that it only requires a small amount 
of additional programming. This section gives two examples.

To begin a simulation, we need to define a program that generates one sample of random 
data, analyzes it, and stores the results of interest in memory. Below we see a file defining an 
r-class program (one capable of storing r () results) named central . This program 
randomly generates 100 values of variable x from a standard normal distribution. It next 
generates 100 values of variable w from a "contaminated normal” distribution: N(0.1) with 
probability .95. and X(0,10) with probability .05. Contaminated normal distributions have often 
been used in robustness studies to simulate variables that contain occasional wild errors. For 
both variables, central obtains means and medians.

* Creates a
* x~N(0,1)
* w~N(0,l) with p=.95r w~NO,10) with
* Calculates the irean -nd mediae of x and w
* Stored results: r(xmean) r(xmedian) 
program central, rclass

version 6.0 
drop _all 
set obs 100 
generate x = lavnor-(uniform() ) 
summarize x, detail 
return scalar zmear. = r(mean) 
return scalar zmedian = r(p50) 
generate w = invnom (uniform () ) 
replace w = 10*w if uniform() < 
summarize w, detail 
return scalar vmear. = r(mean» 
return scalar vmedixn = r(p57) 

end

Because we defined centxal as an r-class command, like summarize , it can store 
its results in r() macros. central creates four such macros: r(xmean) and 
r (xmedian) for the mean and median ofx: r (-...-mean) and r (wmedian) forthe mean and 
median of w.

Once central has been defined, whether through a do-file, ado-file, or typing 
commands interactively, we can call this program with a simulate command. To create 
a new dataset containing means and medians of.v and w from 5,000 random samples, type
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simulate
wmean

r ()
describe

(99.6* of memory free)

variable name variable label

Sorted by:

summarize

Obs Mean Std. Dev. Min Max

i

fl

xmean
xmedian

wmean 
wmedian

I
I
I
I

5, 000
4

100,000

storage 
type

central 
xmean 
xmedian 
wmean 
wmedian

float 
float 
float 
float

5000
5000
5000
5000

display 
format

= r(xmean)
= r(xmedian) 
= r(wmean)
= r(wmedian)

-.0015915 
-.0015566 
-.0004433 
.0030762

value 
label

.0987788 

. 1246915 

.2470823

.1303756

r (xmean)
r(xmedian) 
r(wmean)
r(wmedian)

-.4112561
-.4647848
-1.11406

-.4584521

.3699467

.4740642

. 8774976

.5152998I q? r

simulate: central 
1 Aug 2005 17:50

command:
statistics:

"central" 
= r(wmean)

xmean 
xmedian 
wmean 
wmedian

*9.0g 
%9.0g 
%9.0g 
%9.0g

Contains data 
obs :

vars :
size:

■'ll

e! i ’

The means of these means and medians, across 5,000 samples, are all close to 0 — 
consistent with our expectation that the sample mean and median should both provide unbiased 
estimates of the true population means (0) for x and w. Also as theory predicts, the mean 
exhibits less sample-to-sample variation than the median when applied to a normally distributed 
variable. The standard deviation of xmedian is .125, noticeably larger than the standard 
deviation ofxmean (.099). When applied to the outlier-prone variable w, on the other hand, the 
opposite holds true: the standard deviation of wmedian is much lower than the standard 
deviation of wmean (. 130 vs. .247). This Monte Carlo experiment demonstrates that the median 
remains a relatively stable measure of center despite wild outliers in the contaminated 
distribution, whereas the mean breaks down and varies much more from sample to sample. 
Figure 14.4 draws the comparison graphically, with box plots (and, incidentally, demonstrates 
how to control the shapes of box plot outlier-marker symbols).

This command creates new variMesxmean,xmedian, wmean, and wmedian, based on the 
results from each iteration of central.

Variable |

xmean = r(xmean) xmedian = r(xmedian) 
wmedian = r(wmedian), reps(5000)
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Figure 14.4

o

I‘Pr

r

r(xmean) r(xmedian) r(wmean) BB r(wmedian)

I

i

I

1

I

§

g

i

Our final example extends the inquiry to robust methods, bringing together several themes 
from this book. Program regsim generates 100 observations of x (standard normal) and two 
y variables, yl is a linear function ofx plus standard normal errors. y2 is also a linear function 
ofx, but adding contaminated normal errors. These variables pennit us to explore how «rious 
regression methods behave in the presence of normal and nonnormal errors. Four methods are 
employed: ordinary least squares (regress), robust regression (rreg), quantile reeression 
( qreg ), and quantile regression with bootstrapped standard errors ( bsqreg , with 500 
repetitions). Differences among these methods were discussed in Chapter 9. Program 
regsim applies each method to the regression ofyl onx and then to the regression of v2 on 
x For this exercise, the program is defined by an ado-file, regsim.ado, saved in the 
C:\ado\personal directory.

. graph box xmean xmedian wmean wmedian, yline(O) legend(col (4) ) 
marker (1, msymbol( + )) marker(2, msymbol(Th)) 
marker (3, msymbol(Oh)) marker(4, msymbol(Sh))
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yl = 2x + el • el ~ N(0,1)
MODEL 2: y2 = 2x + e2

* Bootstrap standard errors for qreg involve 500 repetitions.

{

e

.05

end

r (Bl)
r(B1R)
r(SE1R)

i

. 95
.05

"J

The r-class program stores coefficient 
analyses. These results have names such as

version 8.0
if •»' i • « = — »»9w

^delimit ;
global S_1 "bl blr selr big selq selqb 

b2 b2r se2r b2q se2q se2qb,, ;
tfdelimit or
exit

or standard error estimates from eight regression

coefficient from OLS regression ofy7 onx 

coefficient from robust regression ofy/ on x 

standard error of robust coefficient from model 1

program regsim,
* Performs one iterati:
* OLS regression (regress) with robust
* (qreg and bsqreg) regression.
* with x ~ N (0,1)

MODEL 1:

rclass
on of a Monte Carlo simulation comparing 

--- - (rreg) and quantile 
Generates one n = 100 sample 

and y variables defined by the models:

and so forth. All the robust and quantile regressions involve multiple iterations: typically 5 to 
10 iterations for rreg , about 5 for qreg, and several thousand for bsqreg with its 500 
bootstrap re-estimations of about 5 iterations each, per sample. Thus, a single execution of

e2 ~ N(0,l) with p = 
e2 ~ N(0,10) with p =

}
drop _all
set obs 100
generate x = invncrr. (uniform () ) 
generate e = invncrrr. (uniform () ) 
generate yl = 2*x 
reg yl x

return scalar =1 = _b[x] 
rreg yl x, iterate(25)

return scalar =1R = _b[x]
return scalar SE1R = _se[x] 

qreg yl x
return scalar EIQ = _b[x]
return scalar SE1Q = _se[x] 

bsqreg yl x, reps(500)
return scalar SE1QB = _se[x] 

replace e = 10 * e if uniform() 
generate y2 = 2*x + e 
reg y2 x

return scalar B2 = _b[x] 
rreg y2 x, iterate(25)

return scalar B2R = _b[x]
return scalar SE2R = _se[x] 

qreg y2 x
return scalar B2Q = _b[x]
return scalar SE2Q = _se[x] 

bsqreg y2 xf reps(500)
return scalar SE2QB = _se[x]

!•
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repetitions of regsim

I describe

I
(99.0% cf memory free)

variable name variable l=bel

O *" *-

)

se2qb float %9.0g

Sorted by:

I summarize

Obs Mean Std. Dev. Max

i

b2q 
se2q

vars : 
size :

I
I
I
I
I

float
float

float 
float 
float

float 
float 
float 
float 
float 
float

5000
5000

5000
5000
5000
5000
5000

5000
5000
5000
5000
5000

%9.0g
%9.0g

%9.0g
%9.0g
%9.0g

%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g 
%9.0g

display 
forma:

bl = r(Bl) 
selq = r(SE1Q) 
se2r = r(SE2R)

. 1362755 
2.006001 
2.000399 
. 1081348 
2.000701

.1328431

. 1436366

2.000828
2.000989
. 1041399
2.001135 
.1262578

value 
label

.0299644

.0346679

.032673
.2484688
.1092553
.0119274
.137111

selr = r(SE1R)
b2 = r(B2) 

se2q = r(SE2Q)

6
= 6

112

.2594844

. 31‘064 I 7

regsim demands more than two thousand regressions. The following command calls for five 
repetitions.

se2q | 
se2qb I

•contaminated errors)
(contaminated

.29979 
3.050552 
2.411423 
.1560973 
2.536621

b2 
b2r 
se2r

bl 
blr 
selr 
blq 
selq 
selqb

selqb 
b2 

b2r 
se2r 
b2q

bl I 
blr i 

selr | 
blq I 

selq |

storage
type

. 102018 
. 1052277 
.0109429 
.1309186 
. 0281738

.0510818 

.9001114 
1.633241 
,0743103 
1.471802

2.414814 
2.391946 
.1515421 
2.536621 
.2371508

.0542015

. 0589419

12
1 , 000

1.6312 
1.6031 
.0693" 
1.47 
. 0532"31

Monte Carl:
5 0 00 s ar r

2 Aug 200:'

blr = r(BlR) 
selqb = r(SElQB) 
b2q = r (B2Q)

Contains data from C:\data\regsim.dta 
obs: 5,000

simulate "regsim”
blq = r(B1Q) 
b2r = r(B2R) 
se2qb = r(SE2QB), reps(5)

You might want to run a small simulation like this as a trial to get a sense of the time 
required on your computer. For research purposes, however, we would need a much larger 
experiment. Dataset regsim.dta contains results from an overnight experiment involving 5.000 
repetitions of regsim — more than 10 million regressions. The regression coefficients and 
standard error estimates produced by this experiment are summarized below.

Variable |

escir.sies of b 
es :f r. = 10 0

OLS b (norr.al errzrs) 
Robust b ir.:rmal errors. 
Robust SE[r’ (normal errors) 
Quantile b 'normal errors) 
Quantile SH^b] (normal error 
Quantile bootstrap SE[b] 

(normal errors)
OLS b (contaminated errors) 
Robust b (contaminated errors) 
Robust SE[b' (contaminated 
errors)

Quantile b
Quantile SE 
errors)

Quantile bootstrap SEfb] 
(contaminated errors)
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ytitie ( "Es tiniates of slope (b=2)")

Figure 14.5
co

1
| OLS 1 g robust 1 | quantile 1 | OLS 2 | robust 2 quantile 2

• ttest b2r = 2

Obs Mean [95% Conf

5000 2.000399 .0015451 .1092553 1 . 9973" 2.0

Ho: ~ean(b2r) = 28

P P > P II

All three i 
estimates for both i 
can be confirmed through t tests such as

B

Variable | 
---------------  

b2r |

Figure 14.5 draws the distributions of coefficients as box plots. To make the plot more 
hip 11 non 1—.—^____J/____  • « b *

) options, which set the width 
at less than their default size.

' 1

in

Q

o
U)

V)
CD
rof
win

UJ^--■I ii Bi
■ !•

Hp 
■] 
ijl;I

ftpI
II

Inter*-= 1

Ha: mean < 2
t = 0.2585

< t = 0.6020

Ha: mean > 2
t = 0.2585

> t = 0.3980

Ha: mean != 2
t = 0.2585

iTi = 0.7960

regression methods (OLS, robust, and quantile) produced mean coefficient 
—i models that are not significantly different from the true value, p = 2. This

Std. Err. Std. Dev.

Degrees of freedom: 4999

readable we use the legend (symxsize (2) colgap(4)) 
of symbols and the gaps between columns within the legend 
help legend_option and help relativesize supply further information about 
these options.
. graph box bl blr blq b2 b2r b2q, 

yline (2)
legend(row(1) symxsize(2) colgap(4)

label(1 "OLS 1") label(2 "robust 1") label(3 "quantile 1") 
label(4 "OLS 2") label(5 "robust 2") label(6 "quantile 2"))

One-sample t test
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I

I

i

I

The calculations above use the r(Var) variance result from summarize We first 
obtain the variance of the OLS estimates bl, and place this into global macro Varbl Next 
the variances of the robust estimates blr, and the quantile estimates blq, are obtained and each 
comparedwith Varbl. This reveals that robust regression was about 94% as efficient as OLS 
when applied to the normal-errors model — close to the large-sample efficiency of 95% that 
this robust method theoretically should have (Hamilton 1992a). Quantile reeression, in 
contrast, achieves a relative efficiency of only 61% with the normal-errors model?

Similar calculations for the contaminated-errors model tell a different story. OLS was the 
best (most efficient) estimator with normal errors, but with contaminated errors it becomes the 
worst:
. quietly summarize b2

. global Varb2 = r(Var)

. quietly summarize b2r

■ display 100*($Varb2/r(Var) ) 
517.2005"
. quietly summarize b2q

. display 100* ($Varb2/r(Var))
328.3971

Outliers in the contaminated-errors model cause OLS coefficient estimates to vary wildly 
from sample to sample, as can be seen in the fourth box plot of Figure 14.5. The variance of 
these OLS coefficients is more than five times greater than the variance of the corresponding 
robust coefficients, and more than threti times greater than that of quantile coefficients. Put 
another way, both robust and quantile regression prove to be much more stable than OLS in the 
presence of outliers, yielding correspondingly lower standard errors and narrower confidence 
intervals. Robust regression outperforms quantile regression with both the normal-errors and 
the contaminated-errors models.

All the regression methods thus yield unbiased estimates of 0, but they differ in their 
sample-to-sample variation or efficiency. Applied to the normal-errors model 1, OLS proves 
the most efficient, as the famous Gauss-Markov theorem would lead us to expect. The 
obsened standard deviation of OLS coefficients is .1016, compared with .1047 for robust 
regression and .1282 for quantile regression. Relative efficiency, expressing the OLS 
coefficient’s observed variance as a percentage of another estimator’s observed variance 
provides a standard way to compare such statistics:
. quietly summarize bl

. global Varbl = r(Var)
• quietly summarize blr
. display 100*($Varbl/r(Var) ) 
93.992612

. quietly summarize blq

■ display 100*($Varbl/r(Var) )
60.722696
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Figure 14.6
co
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Figure 14.6 illustrates the comparison between OLS and robust regression with a scatterplot 
showing 5,000 pairs of regression coefficients. The OLS coefficients (vertical axis) vary’ much 
more widely around the true value, 2.0. than rreg coefficients (horizontal axis) do.
. graph twoway scatter b2 b2r, msymbol(p) ylabel(1(.5)3, grid) 

yline(2) xlabel(1 ( .5)3, grid) xline(2)

The experiment also provides information about the estimated standard errors under each 
method and model. Mean estimated standard errors differ from the observed standard 
deviations of coefficients. Discrepancies for the robust standard errors are small — less than 
1 /o. For the theoretically-deri ved quantile standard errors the discrepancies appear a bit larger, 
between 3 and 4%. The least satisfactory estimates appear to be the bootstrapped quantile 
standard errors obtained by bsqreg . Means of the bootstrap standard errors exceed the 
observed standard deviation of blq and b2q by 4 to 5%. Bootstrapping apparently over­
estimated the sample-to-sample variation.

Monte Carlo simulation has become a key method in modem statistical research, and it 
plays a growing role in statistical teaching as well. These examples demonstrate how readilv 
Stata supports Monte Carlo work.

‘■’i —t--------------------------------r-
1.5 2 2 5

Robust b (contaminated errors)
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alpha reliability),

(ANCOVA),I
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i

artificial data, 14, 57-61,241, 387-394
ASCII (text) file

read data, 13-14, 39-42
write data, 42
write results (log file), 2-3, 6-7

autocode (create ordinal variables) 31 
37-38

autocorrelation, 339, 350-352, 357-358 
369-373

aweight (analytical weights), 54
axis label in graph, 66

angle, 81-82
format, 13, 24-25, 76, 305-306
grid, 113-115
suppress, 118, 129, 173

axis scale in graph, 66, 112-118

A
ac (autocorrelations), 339, 351-352
acprplot (augmented component-plus­

residual plot), 197, 202-203
added-variable plot, 198,201-202
ado-file (automatic do), 233-235 362 

373-375
alpha (Cronbach’s

318-319
analysis of covariance

141-142, 153-154
analysis of variance (ANOVA)

factorial, 142, 152-153, 156
interaction effects, 142, 152-154, 

156-157
median, 253-255
A-way, 152-153
one-way, 142, 155
predicted values, 155-158. 167
regression model, 153-154, 249-256 
repeated-measures, 142 
robust, 249-256
standard errors, 155-157, 167
three-way, 142
two-way, 142, 152-153,156-157

anova, 142, 152-158, 167,239
append, 13, 42-44
ARCH model (autoregressive conditional 

heteroskedasticity), 339
area plot, 86-87
args (arguments in program). 366-368
areg (absorb variables in regression) 

179-180
ARIMA model (autoregressive integrated 

moving average), 339, 354-360 
arithmetic operator, 26

B
_b coefficients (regression), 230. 269 

273-274. 285, 356
band regression. 217-219
bar chart, 94-99, 147, 150-151
Bartlett's test for equal variances, 149-150 
batch-mode program, 61
bcskewO (transform to reduce skew). 129
beta weight (standardized regression 

coefficient), 160, 164—165
Bonferroni multiple-comparison test 

correlation matrix. 172-173 
one-way ANOVA, 150-151

bootstrap, 246, 315-316, 382-387 
389-394

box plot, 66, 90-91, 
150-151,389,392 ’ 118-119, 147,
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with

cross-tabulation,

289,

Ili

II
II 
i'

c
c chart (quality control), 105
caption in graph, 109-110
case identification number, 38-39 
categorical variable, 35-39, 183-185 
censored-normal regression, 264 
centering to reduce multicollinearity, 

212-214
chi-squared

deviance (logistic regression), 271, 
275-278

equal variances in ANOVA, 149-150 
independence in cross-tabulation, 55, 

130-133,281
likelihood-ratio in

130-131,281
likelihood-ratio in logistic regression, 

267-268, 270, 272-273, 281
probability plot, 105
quantile plot, 105

ci (confidence interval), 124, 255
cii (immediate confidence interval), 124 
classification table (logistic regression),

264, 270-272
clear (remove data from memory), 14-15, 

23,362
cluster analysis, 318-320, 329-338 
coefficient of variation, 123-124 
collapse, 52-53
color

bar chart, 95-96
pie chart, 92
scatterplot symbols, 74
shaded regions, 86

combine data files, 14, 42-47!.

combine graphs. See graph combine 
comments in programs. 364, 369-370, 

373-374
communality (factor analysis). 326 
component-plus-residual plot, 197-198.

202-203
compress, 13. 40, 60-61
conditional effect plot, 230-232,273-274.

284-287
confidence interval 

binomial, 124 
bootstrap, 383-384, 386 
mean, 124
regression coefficients, 163
regression line, 66, 85, 110-112, 160
robust mean, 255
Poisson, 124

constraint (linear constraints), 262
Cook and Weisberg heteroskedasticity test. 

197
Cook’s/), 158, 167, 197. 206-210 
copy results, 4 
correlation

hypothesis test, 160, 172-173
Kendall’s tau, 131, 174-175 
matrix, 18, 59, 160, 171-174
Pearson product-moment, 1, 18, 160.

171-173
regression coefficient estimates. 214
Spearman, 174

corrgram (autocorrelation). 339, 351, 
357-358, 373

count-time data, 293-295 
covariance

regression coefficient estimates, 167.
173, 197,214

variables, 160, 173
COVRATIO, 167, 197, 206
Cox proportional hazard model, 290, 

299-305
Cramer’s V, 131
Cronbach’s alpha, 318-319 
cross-correlation, 353-354 
cross-tabulation, 121, 130-136 
ctset (define count-time data), 

293-294

Box-Cox
regression, 215,226-227
transformation, 129

Box-Pierce Q test (white noise), 341,351, 
354, 357-358

browse (Data Browser), 13
bs (bootstrap), 382-387
bsqreg (quantile regression

bootstrap), 240, 246, 389-394 
by prefix, 121, 133-134

I li li
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I

I
I

!

E
e-class, 381,386

F
factor analysis, 318-328
factor rotation, 318-319, 322-325
factor score, 318-319,323-325
factorial ANOVA, 142, 152-153, 156
FAQs (frequently asked questions), 8 
filter, 343
Fisher’s exact test in cross-tabulation, 131 
fixed and random effects, 162
foreach, 365
format

axis label in graph, 76. 305-306
input data, 40-41
numerical display, 13, 24-25, 359 

forvalues, 365
frequency table, 130-133. 138-139
frequency weights, 54-55. 66, 73-74, 120, 

123,138-140
function

date, 30
mathematical, 27-28
probability, 28-30
special, 31
string, 31

fweight (frequency weights), 54-55, 
---- 73-74, 138-140

cttost (convert count-time to survival-time 
data). 289. 294-295

cubic spline curve. See graph twoway 
mspline

cv (coefficient of variation), 123-124

1

edit (Data Editor). 13, 15-16 
effect coding for ANOVA. 250-251 
efficiency of estimator, 393 
egen, 33, 331, 340, 343 
eigenvalue, 318-319, 321, 326 
empirical orthogonal function (EOF), 325 
Encapsulated Postscript (.eps) graph. 6

116
encode (string to numeric), 13, 33-34 
epidemiological tables, 288 
error-bar plot, 143, 155-157
estimates store (hypothesis testins), 

272-273, 278-279, 282-283
event-count model, 288, 290. 310-313 
Exploratory Data .Analysis (EDA), 

124-126
exponential filter (time series), 343 
exponential growth model. 216, 232-235 
exponential regression (survival analysis),

305-307

D
Data Browser, 13
data dictionary, 41
Data Editor, 13, 15-16
data management, 12-63
database file, 41-42
date, 30, 266, 340-342
decode (numeric to string). 33-34
#delimit (end-of-line delimiter), 61. 116, 

362
dendrogram, 319, 329, 331-337
describe (describe data), 3, 18
destring (string to numeric), 35 
DFBETA, 158, 167, 197, 205-206,

208-210
DFITS, 167, 197, 206, 208-210 
diagnostic statistics

ANOVA, 158, 167
logistic regression, 271,274-278
regression, 167, 196-214

Dickey-Fuller test, 340, 355-356 
difference (time series), 349-350 
display (show value onscreen). 31-32.39.

211.269
display format. 13, 24-25. 359
do-file, 60-61, 115-116, 361-362,

367-373
Do-File Editor, 60, 361
dot plot, 67, 95,99-100, 150-151 
drawnorm (normal variable), 13, 59 
drop

variable in memory, 22
data in memory, 14-15, 23, 40, 56
program in memory, 363, 373-375 

dummy variable, 35-36, 176-185, 267 
Durbin-Watson test, 158, 197, 350 
dwstat (Durbin-Watson test), 197, 350
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110-112,

graph twoway spike, 84, 87-88, 347
graph use, 116
graph?, 65
gray scale, 86
greigen (graph eigenvalues), 318-319, 

321-322
gsort (general sorting), 14

hK

I. i
if qualifier, 13, 14, 19-23, 204-205,209 
if...else, 366
import data. 39—42
in qualifier, 14. 19-23. 166
incidence rate, 289-290.

309-310,312
inequality’, 21
infile (read ASCH data). 13-14, 40-42 
infix (read fixed-format data), 41-42 
influence

logistic regression, 271, 274-278
regression (OLS), 167, 196-198, 201, 

204-208
robust regression, 248 

insert
graph into document, 6
table into document, 4

insheet (read spreadsheet data), 41-42 
instrumental variables (2SLS), 161

I ''

1
I

f
si

i

H
hat matrix, 167,205-206, 210
hazard function. 290, 302, 307, 309 
help, 7
help file, 7, 375-377
heteroskedasticity, 161, 197, 199-200, 

223-224,239,256-258, 290,315,339 
hettest (heteroskedasticity test), 197, 

199-200
hierarchical linear models, 162 
histogram, 65, 67-71, 385 
Holt-Winters smoothing, 343
Huber/White robust standard errors, 160, 

256-261

293, 297,

G
generalized linear modeling (GLM). 264, 

291,313-317
generate, 13, 23-26, 37, 39 
gladder, 128
Gompertz growth model, 234-238
Goodman and Kruskal’s gamma. 131 
graph bar, 66-67, 94-99, 147
graph box, 66,90-91, 118-119. 147.389, 

392
graph combine, 117-1 19, 147. 150-151, 

222, 231-232
graph dot, 67, 95, 99-100, 150-151
graph export, 116
graph hbar, 97-98
graph hbox, 91, 150-151
graph matrix, 66, 77, 173-174
graph pie, 66, 92-94
graph twoway 

all types, 84-85 
overlays, 66, 85, 110-115, 344-345, 

347-348
graph twoway area, 84, 85-86 
graph twoway bar, 84
graph twoway connected, 5-6,50-51,66, 

79-80, 83-84,114-115,157, 192-193
graph twoway dot, 85
graph twoway Ifit, 66, 74, 85, 110. 168, 

181
graph twoway Ifitci, 85, 

170-171
graph twoway line, 66, 77-82, 112-115, 

117,221-222,242,244,247,344-345, 
371

graph twoway lowess, 85, 88-89, 216, 
219-221

graph twoway mband, 85, 216, 217-219 
graph twoway mspline, 85. 182. 190,

218-219, 226, 287-288
graph twoway qfit, 85, 110, 190 
graph twoway rarea, 84, 170 
graph twoway rbar, 85
graph twoway reap, 85, 89, 157
graph twoway scatter, 65-66, 72-77, 

181-182,277, 394
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198,

198,

See chi-

i

interaction effect
ANOVA, 142, 152-157, 250-253 
regression, 160. 180-185, 211-212, 

259-261
interquartile range (IQR). 53, 91,95, 103, 

123-124, 126, 135
iteratively reweighted least squares (IRLS) 

242
iweight (importance weights). 54

K
Kaplan-Meier survivor function, 289-290 

295-298
keep (keep variable 

173
Kendall’s tau. 131, 174-175 
kernel density, 65. 70. 85 
Kruskal-Wallis test. 142. 151-152 
kurtosis, 122-124, 126-127

J
jackknife

residuals, 167
standard errors. 314-317

or observation), 23,

L
L-estimator, 243
label data. 18
label define, 26
label values, 25-26
label variable. 16, 18
ladder of powers, 127-129
lag (time series), 349-350
lead (time series), 349-350
legend in graph, 78.81,112,114-115,157 

221,344
letter-value display, 125-126
leverage, 158, 159, 167, 196, 

201-206,210, 229, 246-248
leverage-vs.-squared-residuals plot, 

203-204
lilt (fit of logistic model), 264 
likelihood-ratio chi-squared.

squared

M
M-estimator, 243
macro, 235,334, 363, 365,367, 370, 387
Mann-Whitney U test, 142, 148-149, 152 
margin in graph, 110, 113, 117-118 

192-193
marker label in graph, 66, 75-76, 202, 204
marker symbol in graph, 66, 73-75, 84 

100,183,277
marksample, 368-369
matched-pairs test, 143, 145-146
matrix algebra, 378-382
mean, 122-124, 126,135-137, 139-140, 

143-158, 387-389
median, 90-91, 122-124, 126, 135-137 

387-389
median regression. See quantile regression 
memory, 14, 61-63
merge, 14, 44-50
missing value, 13-16,21,37-38

line in graph
pattern, 81-82, 84, 115
width, 221, 344, 371

line plot, 77-84
link function (GLM), 291, 313-317
list, 3-4, 14, 17,19, 49, 54,265
•og, 2-3
log file, 2-3, 6-7
logarithm, 27, 127-129, 223-229
logical operator, 20
logistic growth model, 216, 233-234
logistic regression, 262-287
logistic (logistic regression), 185,262-264

269- 278
logit (logistic regression), 267-269 
looping, 365-366
lowess smoothing, 88-89, 216, 219-222
Iroc (logistic ROC), 264
Irtest (likelihood-ratio test), 272-273 

278-279, 282-283
Isens (logistic sensitivity graph), 264
Istat (logistic classification table) 264

270- 272
Ivr2plot (leverage-vs.-squared-residuals 

plot), 198, 203-204
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plot. See

fi ’

R
r chart (quality control), 67, 106, 108

Q
qladder, 128-129
quality-control graphs, 67,105-108 
quantile

defined, 102
quantile plot, 102-103
quantile-normal plot, 67, 104 
quantile-quantile plot, 104-105 
regression, 239-256, 389-394 

quartile, 91, 125-126
quietly, 175, 182, 188

i

I ’
V 1.1

I

!

N
negative exponential growth model, 233 
nolabel option, 32-34
nonlinear regression, 216, 232-238
nonlinear smoothing, 340-341, 343-346 
normal distribution

artificial data, 13, 59, 241
curve, 65
test for, 126-129

normal probability 
quantile-normal plot

numerical variables, 16, 20, 122

1

: p
i M

Monte Carlo, 126, 246, 387-394
moving average

filter, 340, 343-344
time series model, 354-360 

multicollinearity, 210-214 
multinomial logistic regression, 264, 278

280-287
multiple-comparison test

correlation matrix, 172-173
one-way ANOVA, 150-151

p
p chart (quality control), 105-107 
paired-difference test, 143, 145-146 
panel data, 161, 191-195
partial autocorrelation, 339-340, 352 
partial regression plot. See added-variable

plot

O
OBDC (Open Database Connectivity), 42 
odds ratio. See logistic regression 
obsenation number, 38-39 
omitted-variables test, 197, 199 
one-sample t test, 143-146 
one-way ANO VA, 149-152 
open file, 2 
order (order variables in data), 19 
ordered logistic regression. 278-280 
ordinal variable, 35-36 
outfile (write ASCII data), 42 
outlier, 126, 239-248. 344, 388-394 
overlay two way graphs, 110-115

Pearson correlation, 5, 19, 160, 171-173 
percentiles, 122-124, 136 
periodogram, 340
Phillips-Perron test, 355 
pie chart, 66, 92-94 
placement (legend in graph), 114-115 
poisgof (Poisson goodness of fit test) 

310-311
Poisson regression, 290-291,309-313,317 
polynomial regression, 188-191
Portable Network Graphics (.png) graph. 6, 

116
Postscript (.ps or .eps) graph, 6, 116 
Prais-Winsten regression, 340, 359-360 
predict (predicted values, residuals.

diagnostics)
anova, 155-158, 167
arima, 357
logistic, 264, 268-271,284
regress, 159, 165-167, 190, 196-197 

205-210,216, 233
principal components, 318-325 
print graph, 6 
print results, 4
probit regression, 262-263, 314 
program, 362-363
promax rotation, 319, 322-325
p weight (probability or sampling weights), 

54-56
pwcorr (pairwise Pearson correlation) 

160, 172-173, 174-175



Index 407

I

operating

318—319,

239-256,

264, 278,

graph twoway

I
i

7
I
I

Also see

r-class, 381,387, 390
Ramsey specification error test (RESET), 

197
random data, 56-60, 241, 387-394 
random number, 30, 56-59, 241 
random sample, 14, 60
range (create data over range), 236 
range plot, 89
range standardization, 334-335 
rank, 32
rank-sum test, 142. 148-149, 152 
real function, 35-36
regress (linear regression), 159-165, 239, 

386,389-394
regression

absorb categorical variable, 179-180 
beta weight (standardized regression 

coefficient), 160, 164-165 
censored-normal, 264
confidence interval, 110-112, 163, 

169-171
constant, 163 
curvilinear, 189-191,216, 223-232 
diagnostics, 167, 196-214 
dummy variable, 176-185 
hypothesis test, 160, 175-176 
instrumental variable, 161
line, 67, 110-112, 159-160, 168-171, 

190,242,244,247
logistic, 262-287 
multinomial logistic, 

280-287
multiple, 164-165 
no constant, 163 
nonlinear, 232-238 
ordered logistic, 278-280 
ordinary least squares (OLS), 159-165 
Poisson, 290-291,309-313,317 
polynomial, 188-191 
predicted value, 165-167, 169 
probit, 262-263, 314 
residual, 165-167, 169, 205-207 
robust, 239-256, 389-394 
robust standard errors, 256-261 
stepwise, 161, 186-188 
tobit, 188,263

transformed variables, 189-191. 216, 
223-232

two-stage least squares (2SLS), 161 
weighted least squares (WLS). 161, 

245
relational operator, 20
relative risk ratio, 264, 281-284 
rename, 16, 17
replace, 16, 25-26, 33
RESET (Ramsey test), 197 
reshape, 49-52
residual, 159-160, 167, 200-208 
residual-vs.-fitted (predicted values) plot,

160, 169, 188-191, 198,200 
retrieve graph, 116 
robust

anova, 249-255
mean, 255
regression, 239-256
standard errors and variance, 256-261

ROC curve (receiver 
characteristic), 264

rotation (factor analysis), 
322-325

rough, 345
rreg (robust regression), 

389-394
rvfplot (residual-vs.-fitted plot), 160, 

188-191,198,200
rvpplot (residual-vs.-predictor plot

S
sample (draw random sample), 14,60 
sampling weights, 55-56
sandwich estimator of variance, 160,

256-261
SAS data files, 42
save (save dataset), 14,16, 23
save graph, 6
saveold (save dataset in previous Stata 

format), 14
scatterplot.

scatter
axis labels, 66, 72 
basic, 66-67
marker labels, 67, 74-75, 202-204
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150,test.

and Control1
•f

standard error
ANOVA, 155-157 
bootstrap. See bootstrap 
mean. 124
regression prediction, 167, 169-171 
robust (Huber/White), 160,256-261 

standardized regression coefficient, 160, 
164-165

standardized variable, 32, 331 
Stat/Transfer, 42
Stata Journal, 10-11
Statalist online forum, 10 
stationary' time series, 340, 355-356 
stcox (Cox hazard model), 290, 299-303 
stcurve (survival analysis graphs), 290, 

307
stdes (describe survival-time data), 289, 

292-293
stem-and-leaf display, 124-125 
stepwise regression, 161, 186-188 
stphplot, 290
streg (survival-analysis regression), 290, 

305-309
string to numeric, 32-35 
string variable, 17, 40-41
sts generate (generate survivor function), 

290
sts graph (graph survivor function), 289, 

296,298
sts list (list survivor function), 290 
sts test (test survivor function), 290, 298 
stset (define survival-time data), 289, 

291-292, 297
stsum (summarize survival-time data), 289, 

293, 297
studentized residual, 167, 205, 207 
subscript, 39-^40, 343
summarize (summary statistics), 2,17,20, 

31-32.90-91, 120-124,383
sunflower plot, 74-75
survey sampling weights, 55-56, 161, 263 
survival analysis, 288-309
svy: regress (survey data regression), 161 
svyset (survey data definition), 56 
sw (stepwise model fitting), 186-188 
symmetry plot, 100, 102

II 
i

11

marker symbols. 72-73. 119. 182-183 
matrix, 66, 77. 173-174 
weighting, 66, 74-75, 207-208
with regression line. 66, 110-112, 

159-160, 181-182
Scheffe multiple-comparison test. 150-151 
score (factor scores), 318-319. 323-325 
scree graph (eigenvalues), 318-319, 

321-322
search, 8-9 
seasonal difference (time series). 349-350 
serrbar (standard-error bar plot), 143,

155-157 
set memory, 14, 62-63 
shading

color, 86
intensity, 91 

Shapiro-Francia test. 127 
Shapiro-Wilk test, 127 
shewart, 106
Sidak multiple-comparison

172-173 
sign test, 144-145 
signed-rank test, 143 146 
skewness, 122-124, 126-127 
sktest (skewness-kurtosis test). 126-127, 

383
slope dummy variable, 180 
SMCL (Stata Markup

Language), 376-377 
smoothing, 340-341, 343-346 
sort. 14. 19,21-22, 166 
Spearman correlation, 174-175 
spectral density, 340 
spike plot, 84, 87-88, 347 
spreadsheet data, 41-42 
SPSS data files, 42 
standard deviation, 122-124, 126. 135

n
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syntax (programming), 368-369

smoothing).

161,

(standardized variable), 32, 331

I

*

V
variance, 122-124, 135,214
variance inflation factor, 197, 211-212 
varimax rotation, 319, 322-325

U
unequal variance in t test, 143, 148-149
uniform (random number generator), 30

56-58,241
unit root, 355-356
use, 2-3, 15 Z

z score

version, 364
W
web site, 9
Weibullregression (survival analysis), 305, 

307-399
weighted least squares (WLS), 161, 245 
weights, 55-57,74-75,122-124.138-140

161
Welsch’s distance, 167, 206-210 
which, 374 
while, 365-366
white noise, 341, 351, 354. 357-358
Wilcoxon rank-sum test, 142. 148-149 

152
Wilcoxon signed-rank test. 143. 146
Windows metafile (.wmf or .emf) eraph 6 

116
wntest (Box-Pierce white noise O test) 

341
word processor

insert Stata graph into. 6
insert Stata table into, 4

Y
y axis in graph. See axis label in graph, 

axis scale in graph

T
t test

correlation coefficient, 160, 172-173 
means, 143-149
robust means, 255
unequal variance, 148

table, 121, 134-136, 152 
tabstat, 120, 123-124
tabulate, 4, 15, 36-37, 56, 121, 130-133 

136
technical support, 9
test (hypothesis test for model), 160, 

175-176,312
text in graph, 109-110, 113, 222 
time plot, 77-84, 343-348 
time series, 339-360
tin (times in), 346-347, 350, 359 
title in graph, 109-110, 112-113 
tobit regression, 188, 263
transfer data, 42
transform variable, 126-129,189-190,216 
transpose data, 47-49
tree diagram, 319, 329, 331-337
tsset (define time series data), 340, 342, 

346
tssmooth (time series

340-341, 343-346 
ttest, 143-149, 392 
Tukey, John, 124 
twithin (times within), 346-347 
two-sample test, 146-149
two-stage least squares (2SLS), 161

X
x axis in graph. See axis label in graph,

axis scale in graph
x-bar chart (quality control), 106-108
xcorr (cross-correlation), 353-354
xi (expanded interaction terms), 160 

183-185
xpose (transpose data), 48-^19
xtmixed (multilevel mixed-effect models) 

162
xtreg (panel data recession), 

191-195



Data files are available at http://www.duxbury.com, the Duxbury Web site.

4

A A detailed, example-based introduction to the 
new graphical capabilities of Stata. Topics 
range from simple histograms and time plots to 
regression diagnostics and quality control 
charts. New sections describe methods to 
combine or enhance graphs for publication. A Guidelines for writing your own programs in 

Stata—user-written programs allow creation 
of powerful new tools for database management 
and statistical analysis and support computa­
tion-intensive methods, such as bootstrapping 
and Monte Carlo simulation.

A Advanced methods, including nonlinear, 
robust, and quantile regression; logit, multino­
mial logit, and other models for categorical 
dependent variables; survival and event-count 
analysis; generalized linear modeling (GLM), 
factor analysis, and cluster analysis—all 
demonstrated through practical, easy-to-follow 
examples with an emphasis on interpretation.

THOMSON
——---------------
BROOKS/COLE

For students and practicing researchers alike, Statistics with Stata opens the door to full use of the popular Stata 
program—a fast, flexible, and easy-to-use environment for data management and statistical analysis. Now integrating 

a a s impressive new graphics, this comprehensive book presents hundreds of examples showing how you can apply 
Stata to accomplish a wide variety of tasks. Like Stata itself, Statistics with Stata will make it easier for you to 
move fluidly through the world of modern data analysis. Its contents include:

Your Guide to a Powerful, State-of-the-Art Statistical Program- 
Now updated for use with Version 9!

Visit Brooks/Cole online at www.brookscole.com isbn

. . statistics with
tor your learning solutions: www.thomson.com/learning I

A Basic statistical tools, including tables, para­
metric tests, chi-square and other nonparamet­
ric tests, t tests, ANOVA/ANCOVA, correlation, 
linear regression, and multiple regression.

A A complete chapter on database management, 
including sections on how to create, translate, 
update, or restructure datasets.
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