# ANDHRA PRADESH BURDEN OF DISEASE AND COST EFFECTIVENESS STUDY

REPORT

CENTRE FOR SOCIAL SERVICES ADMINISTRATIVE STAFF COLLEGE OF INDIA BELLA VISTA HYDERABAD -49

o hl

# Andhra Pradesh Burden of Disease and Cost Effectiveness Study

#### I. Introduction

There is no doubt that considerable improvement in the health status of the communities did occur during the past few decades. However, much more still remains to be done. While communicable diseases are still common in developing countries, the health systems need to cope up with the ageing population suffering from non communicable degenerative diseases. Emergence of illnesses like AIDS started to throw new challenges upon the systems.

Any discussion of the health policy should start with scaling of a problem which aids in setting health priorities and targeting the health services to the needy and disadvantaged groups of the society. Most of the assessments of relative importance of different diseases, so far, are based on how many deaths they cause. This has certain merits as death is an unambiguous event and the vital registration systems of many countries routinely provide the data required. Even this approach has lacunae as there are no consistent estimates of adult mortality in many developing countries and the available mortality estimates generally confine to infancy and childhood. There are, however, many non fatal conditions which are responsible for great loss of 'healthy life'. Disability has not been included in estimating the burden as it is considered a problem only in societies that had undergone epidemiological transition.

With expanding role of cost-effectiveness in health care planning, the need for more comprehensive measurement of burden of disease has become more urgent. Thus, there is an urgent need for a process through which every disease or health problem would be evaluated in

objective fashion so that the programm So far, only one systematic effo

48 causes. Recently, Christopher Mur burden of disease which was used by th Disease (GBD)<sup>1</sup>. This new indicator, th

World Development Report 1993

Community Health Cell Library and Information Centre 367, "Srinivasa Nilaya" Jakkasandra 1st Main, 1st Block, Koramangala, BANGALORE - 560 034. Phone : 5531518 / 5525372 e-mail:sochara@vsnl.com ot be ignored. e in Ghana for o quantify the obal Burden of the standard expected years of life lost (YLL) on model life table West level 26. The value of time lived at different ages is captured in calculating the DALYs using an exponential function which reflects the dependence of the young and the elderly on adults. The time lived with disability is made comparable with the time lost due to premature mortality. For this, six classes of severity of disability have been defined and each class was assigned a disability weight between 0 and 1. Considering the fact that DALY measures the future loss, a social discount rate of three percent discount has been applied. Details of assumptions used in DALY estimation were summarised in Global comparative assessments in the health sector edited by CJL Murray and AD Lopez<sup>2</sup>. About 109 categories of diseases (ICD 9), which are responsible for more than 95% of all causes of death and disability, have been included in this study.

### II. Genesis of Andhra Pradesh Burden of disease and Cost Effectiveness Study:

Subsequent to the Global Burden of Disease study, National Burden of disease studies have been planned to provide more insight to the Burden of Disease Approach (BDA). The countries where National burden of disease studies have been initiated include: Mexico, Columbia, South Africa and India. While in other countries these studies have been planned at National level, in India - considering the vast population and reported diversity in disease pattern - it was felt appropriate to make estimations at state/regional level to begin with. This resulted in the genesis of the Andhra Pradesh Burden of disease and Cost effectiveness of Health Interventions study. Supported by the World Bank, this study has been undertaken by the Administrative Staff College of India in technical Collaboration with the Harvard Centre for Population and Development studies.

#### III. Area and People:

The State of Andhra Pradesh, located in the coastal south India extending on to the deccan plateau, is the fifth largest state in India with a population of 66.3 million<sup>3</sup>. The state has 23 districts spread over three distinct geographical regions which include Coastal Andhra with large coastal plains and fertile deltas, Rayalaseema which is drought prone and interior dry

>

うう

3.

D

<sup>&</sup>lt;sup>2</sup> Global Comparative Assessments in the Health Sector; Disease burden, expenditures and intervention packages Edited by CJL Murray and AD Lopez WHO 1994

Paper 1 of 1992, Final Population Totals, Census of India 1991; Registrar General & Census Commissioner

Telangana region. While the coastal plains constitute the most developed part of the state, Telangana region is more backward in terms of social development. Lack of rains and chronic hunger is a common feature of Rayalaseema. A large majority of the state's population (73%) reside in rural areas consisting of about 29,400 villages. About 27% of the state's population reside in 250 urban towns and cities, a trend more or less common to the rest of the country. About 80% of the urban population is residing in 66 towns having population more than 50,000 and the three corporations of Hyderabad, Vijayawada and Visakhapatnam

About 15.9% of the population belong to scheduled castes while scheduled tribes constitute 6.3%. According to 1991 census, the estimated percentage of literates among population aged seven years and above was 45.11% (Males: 56.2%; Females: 33.7%) compared to the national average of 52.1%. From a strong agricultural base, the state economy has, over the years, diversified into industry and science. The National Sample Survey Organisation's estimates of poverty during 1977-78 (32nd round) and 1983-84 (38th round) indicate that rural poverty in the state has declined from 45.45% to 38.67%. The corresponding decline in the urban poverty during the same period was from 37.02% to 29.4%.

## IV.Objectives:

- To estimate the burden caused by common diseases including injuries and accidents in the State of Andhra Pradesh, India
- Compare the disease burden of urban and rural areas AP and
- Study the cost effectiveness of selected health interventions using DALYs as measure of effectiveness

#### V. Approach:

The essential approach used in Andhra Pradesh Burden of Disease Study was to gather relevant information from different sources, discuss with respective experts and to arrive at the preliminary set of estimates on mortality and disability for each disease. This was followed by a consistency check to validate the estimates made. The disease experts were approached again to give their comments. Thus, the entire exercise - which involved several rounds discussions and series of workshops with disease experts, researchers, demographers and programme managers went through an extensive consultative process.

For estimation of YLL demographic data on age, sex and cause specific mortality rates are required while YLD requires epidemiological data on incidence, prevalence, severity and complications or sequelae. The epidemiological estimates are also used to check the consistency of demographic estimates and vice versa. The estimates of burden in APBD study are made for 1991 as it happens to be the Census year and hence provides true population distribution. Considering the variations in living conditions and access to health and related services, separate estimates have been made for urban and rural areas. The census definition of urban areas was used to distinguish from the rural areas.

#### VI. Demographic Estimates:

#### A Age specific mortality:

A preliminary workshop was conducted to identify the sources of mortality data. Two important sources of population distribution and age specific mortality identified were the 1991 Census and Sample Registration Scheme (SRS). In addition, community based studies undertaken from Andhra Pradesh which provided information mortality were listed during the workshop.

The final population totals for AP from 1991 census are not yet available. However, the primary census abstract provides preliminary data on population by sex below 6 years and above 6 years separately for urban and rural areas. Enquiry with Registrar General's office indicated that it may take one more year to complete the detailcd analysis of 1991 AP Census data. Hence, the Sample Registration Scheme (SRS) estimates for urban and rural Andhra Pradesh were used to

4

develop life tables for males and females<sup>4</sup>. When the actual population distribution is made available from 1991 Census data, the SRS estimates will be replaced by them.

# B Preliminary disease list preparation:

00

0

0

0

0

2

C

3

2

)

>

3

)

A preliminary list of diseases was prepared after reviewing the available data and discussing with the local disease experts and demographers. The GBD norm of grouping the diseases in to three groups on the basis of epidemiological transition was followed. The Group I included the pre- transition diseases: Communicable, Maternal and Perinatal. Considering the fact that nutrition deficiency disorders tend to be predominate in pre-transition period, they have been included in group I. The Group II consisted of non communicable and degenerative disorders while Injuries and accidents were included in Group III. As the cause of death and disease pattern emerged this preliminary disease list was modified to ensure that it captures all the major causes of mortality and morbidity in AP.

# C Cause of Death determination:

Like many developing countries the Vital Registration System in India is poor both in terms of coverage as well as content. The usual option in such situation is either to use cause of death models or to estimate the cause of death pattern using epidemiological approach. The model based estimates may not capture the true cause of death pattern in developing countries as they are mostly based on past mortality patterns observed in developed countries. They are also influenced by changes in ICD revisions and diagnostic practices. In case of epidemiological estimates, adequate data may not available for all diseases to make estimations. Another option is to make the cause of death estimates using data from sample registration schemes or disease surveillance systems. In India two schemes provide information on cause of death pattern. Survey of Cause of Death (SCD) provides cause of death information for broad cause groups in rural areas using Verbal Autopsy techniques while Medical Certification Cause of Death (MCCD) provides physician certified cause of death information from selected hospitals. This data is available in three digit ICD 9 coding.

#### i. Cause of death estimation for rural AP:

2

00

2

2

2

2

2

2

2.

2

3

5

3

3

3

3

3

3

5

5

5

3

5

5

5

3

5

Ć

2

2

) )

)

)

)

The SCD Scheme- started as Model Registration Scheme in 1960s by the Registrar General, India - provides cause of death information for rural India using " lay reporting " method. In each state sampling units, covering 3-5 thousand rural residents each, are selected using standard guidelines to ensure representativeness. The state of Andhra Pradesh at present has 150 sampling units covering a population of 0.675 million which constitutes about 1% of the total population.

The field work is restricted to the sample village and carried out by para medical worker (called Field Agent) of the selected Primary Health Centre trained in the verbal autopsy techniques. A set of guidelines for classification of diseases by a non-medical list of causes of death prepared by the office of the Registrar General of India is provided. The cause of death determination process involves isolation of major cause groups by way of elimination and final identification of specific cause in stages. The medical officer of the PHC scrutinises the deaths recorded by the field agent every month and investigates independently at least two deaths or 10% of deaths recorded to validate the information collected by the field agent.

### Constraints of SCD data:

#### A. Methodological :

The verbal autopsy technique is essentially based on two assumptions:

- Each disease will have unique set of symptoms at the time of death
- The attendants can provide detailed description of events that led to death

Both these assumptions may not always hold good. There is often overlap of symptoms or the attendants may not be in a position to provide the detailed description of symptoms at the time of death. Another important determinant of quality of verbal autopsy technique is the skill of the interviewer to extract the required information from the attendants.

### B. Large number of Unclassified deaths :

Under SCD the cause of death determination is done in a phased manner. Each death is initially classified under 10 major groups and then specific cause is determined. In case of deaths with inadequate information, the general tendency is to include the death in one of the major groups without further probing. Since, BDA requires specific cause of death information, there was no choice but to include deaths under the category of "not classified".

2

う

-1

)

)

7

)

3

)

>

2

5

5

Ĵ

)

,

,

A preliminary analysis of SCD data from the state of AP for a period of six years (1988-93) had shown that out of a total 10,770 deaths (Males: 5979; Females: 4791) reported during this period, more than a third (37.5%) come under the 'not classifiable' category. Two thirds of the deaths included under 'not classifiable' category and 25% of the total deaths were due to senility<sup>4</sup>.

### C. Cause of death information restricted to few diseases:

Like any Verbal Autopsy technique the SCD provides cause of death information only for few diseases. Even among them some of the causes which are described more on the basis of symptoms are difficult to classify. Conditions such as jaundice, convulsions, paralysis, congestive heart failure etc., fall under this category. Similarly all cancers were included in a single group. Unless some additional information is provided it is not possible to classify these deaths. Though SCD protocol insists on recording such information by the field agent, it is often not enforced which makes it difficult to classify these deaths.

# Expert opinion and field enquiry to Improve the quality of SCD data:

With all these constraints SCD still happens to be the single largest source of cause of death information from the rural community. In the APBD study an attempt was made to explore the scope to further improve the quality of SCD data. This is done in four stages.

- Initial review of cause of death description given for the unclassified deaths by medical experts
- Field enquiry of 301 deaths included in not classifiable category during 1992-93 (all the deaths with records available covered)
- Separate survey of 139 deaths classified under 'senility' during 1994 by trained experienced investigators to get more detailed description on events that led to death and symptoms at the time of death.
- Review of the field data by committee of experts (Physician, Paediatrician and Public Health Specialist)

Out of a total 440 deaths subjected to expert opinion and field enquiry 436 (99%) could be classified. Based on this feedback few more categories of diseases were to the SCD list. For example, enquiry revealed that 'electric shock' is an important cause of death in rural males. Using

this data an algorithm was developed to classify the deaths included in not classifiable category of SCD deaths<sup>5</sup>.

ii. Estimation Cause of death for Urban AP:

うつ

S.

Ċ

)

Preliminary analysis of vital registration data from one circle in Hyderabad City indicated that content is poor as cardiorespiratory failure was reported to be the cause of death in as many as 40% of the deaths registered.

Review of MCCD data had shown that only one third of the total urban deaths are being covered under this scheme in AP. However, in the neighbouring state of Maharashtra more than 80% of the urban deaths are medically certified. Considering the proximity of the states and genetic similarity of population, we have assumed that the cause of death pattern in urban Maharashtra closely resembles that of urban AP. MCCD data from Maharashtra state covering a period of five years (1986 -90) was obtained and aggregate cause specific proportionate mortality rates were calculated for APBD age groups separately for both sexes. These rates were applied to the estimated deaths for Urban AP in each age and sex group to arrive at the first estimates of cause specific deaths in urban AP.

### VII.Final APBD disease list and cause of death estimates:

After going through the list of major unclassified deaths in rural and urban AP, the disease list was finalised<sup>6</sup>. Where ever felt necessary, new disease was added and some diseases were excluded. For example, Japanese encephalitis was added in communicable diseases while Leishmaeniasis was excluded. Similarly electric shock and bites by venomous snakes were added in injuries and accidents. Since available cause of death data can not distinguish between acute and persistent diarrhoea, we have included all the diarrhoea's in one group. This decision was also influenced by the fact that interventions for diarrhoea - irrespective of the clinical forms - are similar.

In both urban and rural areas the estimated deaths by cause were matched with the APBD list of diseases. Appropriate algorithm was developed separately for rural and urban areas to distribute all the remaining deaths which are responsible for more than 0.1% of total deaths<sup>7</sup>.

Annexure III

Annexure II

<sup>7</sup> Annexure IV

## VIII. Epidemiological Estimates of mortality and disability :

Epidemiological estimates on disability and mortality were made for each of the disease included in the list. Considering the fact that SCD data can provide only broad leads the data was further validated for each disease using epidemiological approach. Similarly, the estimates of cause of death in urban areas made on the basis of Maharashtra MCCD data were also validated.

### A Disease experts and Literature review:

2

2

2

00

2

2

Č

5

3

3

3

3

3

3

3

3

3

3

3

5

3

3

3

)

)

)

)

)

)

)

For each of the disease included in the list experts have been identified through references and contacting National laboratories. The first round of communication was sent to them which described the methodology with a request to provide first set of estimates on incidence, prevalence, case fatality and remission rates for their respective diseases. The experts were also requested to quote the sources on which their estimates are based and give their opinion on quality of available data. This was followed by personal visit of project team members to different parts of the state and some of the National laboratories to clarify any doubts and to get more information on available epidemiological data in the state/country.

Meanwhile, a detailed literature search was undertaken to compile the epidemiological studies on each disease giving first preference to community based studies undertaken in AP. Information was also obtained from Post graduate dissertations and small scale surveys undertaken in different parts of the State through departments of community medicine. If there are no good community based studies available from the State, studies undertaken in neighbouring States or at National level were considered. For example, in case of cancers, the reported incidence from Madras cancer registry was used for epidemiological estimates. If adequate information is not available even at National level, data from comparable studies in neighbouring countries was considered. For example, in case of Chlamydia we could not get any community based studies from India and all the studies reviewed were hospital based. Hence, reported prevalence figures from Asian population in Singapore were used to arrive at the preliminary estimates. If no data is available from neighbouring countries, the GBD approach of using data from other comparable country was used. Use of hospital based studies was essentially restricted for estimation of case fatality and remission rates.

For all diseases with National programmes surveillance data was obtained from the concerned programme manager. This information was particularly useful in case of vaccine preventable diseases as immunisation coverage significantly alters the disease burden. The details of quality of reviewed studies are presented in Table. As it is evident from the table that better epidemiological data is available for Group I diseases<sup>8</sup>. The estimates for some of the Group II diseases hence were based on small scale studies and studies published from other countries. To make the approach used more explicit two examples of epidemiological estimations, which include Tuberculosis with good epidemiological data and Non Insulin Dependent Diabetes Mellitus with poor epidemiological data, are presented in Annexure<sup>9</sup>.

After first round of literature review, expert comments and programme data analysis a workshop was held. The participants included core expert, local disease experts, programme managers and public health specialists. The first set of epidemiological estimates of all chronic diseases made were subjected to consistency using the Harvard disease model (DISMOD) which uses the known relationships between incidence, prevalence, case fatality and remission<sup>10</sup>. In case of acute diseases responsible for large number of deaths, consistency of epidemiological estimates were checked with the cause of death models.

### B Final estimates of cause of death:

A combination of sources were used to estimate the cause of death pattern. Firstly all estimations of injury and accidents based on survey reports for rural and urban areas were taken as such. Then the proportionate distribution of deaths in group I and group II from epidemiological approach was compared with that of survey data. In urban areas only marginal differences were noticed between the two sets of estimates. Hence, the survey distribution for group I and II was taken as such while the distribution of deaths within each group was based on epidemiological estimations.

In case of rural areas, however, some inconstancies were noticed. As mentioned earlier the SCD data provides information only for broad cause groups and some of the cause of death descriptions such as convulsions, congestive heart failure, jaundice etc. essentially describe symptoms which may occur due to many diseases. The major discrepancy was noticed in case of

Annexure V

3

00

S

S

5

0

0

3

3

3.

3

3

3

3

3

3

3

3

3

5

7

3

3

3

2

)

)

כ כ

)

3

)

CJL Murray & A D Lopez; Quantifying disability: data methods and results; Bull of WHO 1994, 72 (3): 481-494

Annexure VII

3

5

5

5

5

5

3

)

3

3

)

9

3

3

)

)

Diarrhoea and ARI where the SCD data tended to underestimate the deaths particularly in 0-4 yrs. The reported validity of verbal autopsy for childhood deaths varied considerably between studies. Studies in Kenya have shown that the sensitivity of verbal autopsy techniques was low for ARI<sup>11</sup>. The deaths estimated from epidemiological approach were also compared with model based estimates using Preston's cause of death models of countries with comparable mortality pattern. Preston<sup>12</sup> made an estimate of Cause Specific Mortality Rate for 12 major causes of death using data from 48 Nations with a range of life expectancies from 27 to 77 yr. From this data proportionate mortality rates due to diarrhoea for three countries which had general mortality rates comparable to India were calculated. All these estimates suggest a proportionate mortality due to diarrhoea was between 23-29% in the 0-4 years which is consistent with the epidemiological estimates. Studies on diarrhoea mortality report a cause specific mortality between 0.8 to 1.5/1000 among children in 5-14 and 0.4 to 2.5 per 1000 per year in case of adults<sup>13</sup> <sup>14</sup> <sup>15</sup>. Hence, for diarrhoea and ARI we have based the estimates more epidemiological approach.

The Maternal deaths were taken as reported from the survey data for both urban and rural areas as the expert felt that MMR estimates seemed to be quite plausible. However, in case of Perinatal Mortality the SCD data seemed to be an over estimate. An estimation of neonatal mortality was made on the basis of observed relationship between the neonatal and post-neonatal mortality<sup>16</sup>. The estimates suggested that perinatal mortality estimates based on survey data were higher in rural areas while in urban areas they matched fairly well. Considering these constraints we have essentially used the epidemiological approach to estimate the cause of death pattern in rural areas while estimates based SCD data were used as such for injuries & accidents, Maternal

Nazir HZ M et al., The incidence of diarrhoeal diseases and diarrhoeal diseases related mortality in rural swampy low-land area of south Sumatra, Indonesia. J of Tropical Paediatrics, 31:268-272
Challet K and A area of South Sumatra, Indonesia. J of Tropical Paediatrics, 31:268-272

Snow RW et al Childhood deaths in Africa: uses and limitations of verbal autopsies. Lancet 1992 340:351-55

<sup>&</sup>lt;sup>12</sup> Samuel H Preston; Causes of Death, Life tables for National Populations; Seminar Press 1972 ISBN 0-12-895550-3

<sup>&</sup>lt;sup>13</sup> El Alamy MA et al. The incidence of diarrhoeal disease in a defined population of rural Egypt. American Journal of Tropical Medicine and Hygiene, 35:1006-1012 1986

<sup>&</sup>lt;sup>15</sup> Shaikh K et al. Pattern of diarrhoeal deaths during 1966-1987 in a demographic surveillance area in rural Bangladesh. J of Diarrhoeal Diseases Research 8: 147-154 (1990)

<sup>&</sup>lt;sup>16</sup> CJL Murray & Jose Luis Bobadilla; Epidemiological Transitions in the Formerty Socialist Economies: Divergent Patterns of Mortality and Causes of Death; Health Transition Working Paper Series No.94.07 1994

Mortality and for checking the total estimated deaths under broad groups such as Gastrointestinal, Chronic respiratory disorders, Neuropsychiatric diseases etc.

### IX.Results

## A Probability of dying:

The first round of estimates suggest that probability of dying in 0-14 years in AP is less compared to all India average for both sexes (Males: 13% Vs 15%; Females: 11% Vs 16%). Both urban and rural AP fared better than all India average. This trend, however, altered for the later age groups. While marginal differences were noticed among males in 15-59 years (Males: AP: 28%; India 27% ), no difference was noticed among females. In 60-69 years age group the probability of dying in AP was higher than that of all India averages for both sexes (Males: AP: 40%, India: 32%; Females: AP: 29%, India 26%).

Between the urban and rural areas, probabilities of dying were lower for all age groups in urban areas. Lower child mortality and higher adult mortality in AP compared to India suggest that health interventions targeted at children are more effective in AP. This also indicates that the demographic transition process is more advanced in AP compared to the National average.

#### B Cause of death

### A. Cause of death pattern :

The estimated cause of death pattern for all age groups in urban and rural AP is presented in the figure 1. While Group I diseases predominated in rural areas, Group II diseases were responsible for higher mortality in urban areas. About 11% of deaths in rural and 8% in urban areas were due to injuries and accidents. In both rural and urban areas unintentional injuries constituted the majority of Group III deaths. The proportion of deaths constituted by intentional injuries was higher in rural areas compared to urban areas (28% Vs 7%). Eighty seven percent of estimated intentional deaths in rural areas were self inflicted compared to 37% in urban areas indicating a higher suicide rate among rural residents.



When the cause of death pattern in AP for all ages and both sexes was compared with that of India the proportion of deaths due to Group I (50.1% Vs 43.3%) and Group III (10.3% Vs 6.5%) diseases was higher in AP. Considering the lower probabilities of dying in 0-4 years in AP, where Group I diseases predominate, this trend is surprising.

## B. Cause of death pattern by sex

Similar trend was observed when cause of death pattern was compared between the sexes. While Group I deaths predominated among both sexes in rural areas, deaths due to Group II were higher in urban areas. In both areas proportion of deaths due to Group II was higher among females. This difference was more marked in case of urban area. This is quite plausible considering the fact that females are considered to be genetically stronger than males and hence less vulnerable to infectious diseases. Proportionate mortality due to Group III deaths between the two sexes was more or less similar in rural areas while in urban areas males tended to have marginally higher mortality due to Injuries and accidents compared to females.

## C. Cause of death pattern by age:

### 0-4 Years:

2

2

5 5

D

0

2

2

5

2

3

2

5

5

2

2

>

>

About 90% of the estimated deaths in this age group were due to Group I diseases. The proportion of deaths due to Group I diseases was higher in rural areas compared to urban areas (91% Vs 85%). The leading causes of death included Perinatal conditions (M: 27.4%, F: 26.6%), ARI (M:22.2%, F: 23.9%), Diarrhoea (M: 19.1%, F:18.9%) and Measles (M: 6.6%, F: 7.5%) in rural areas. Even in urban areas, excepting Measles, the same causes were responsible for

maximum number of deaths. The higher proportion of Group II deaths in urban areas was mainly due to congenital anomalies. While proportion of Group III deaths are comparable between rural and urban areas among male children, in case of female children however, the corresponding proportion was higher among rural residents compared to their urban counterparts. Most common cause of the Group III deaths among rural girl children was "fall". It is difficult to say to what extent this is due to gender discrimination and female infanticide. This aspect, however, requires further in-depth studies.

#### 5-15 Years:

In this age group also the Group I causes of death predominated. While about a quarter of the estimated deaths in urban areas were due to Group II causes, only about a tenth of the total deaths were due to non communicable diseases in rural areas. The leading causes of Group I deaths included ARI, Anaemia, Diarrhoea and Measles in rural areas and ARI in urban areas. The proportion of deaths due to Injuries and accidents in this age group was much higher in rural areas compared to urban areas (Males: 38% Vs 17%; Females: 24% Vs 17%). The leading cause of accidents in rural areas was "Drowning" while in urban areas it was " Motor Vehicle Accidents".

#### 15-45 Years:

While the Group I diseases still predominated the cause of death at state level, the difference between the proportionate mortality due to Group I and Group II diseases was less marked in urban areas compared to rural areas. Tuberculosis was the leading cause of death among Group I diseases among males and females in both rural and urban areas. However, in rural areas deaths due to maternal conditions contributed equal number of deaths. Marked difference in proportionate mortality due to maternal conditions was noticed between rural and urban areas (32.3% Vs 6.5%). The leading causes of Group II deaths among males included digestive disorders, cardiovascular diseases and cancers in both urban and rural areas while the leading Group II causes among females included cancers and cardiovascular diseases. The most common cancers among males were that of Mouth & oropharynx, Oesophagus, Stomach and Lymphomas & Leukaemias. In females Cancers of Cervix, Breast and Oesophagus were more common.

Deaths due to injuries and accidents constituted a major cause of death in this age group. In rural areas higher proportion of deaths were caused by unintentional injuries among males compared to intentional injuries (18% Vs 12.7%). The leading cause of unintentional injury among males in rural areas was "Motor Vehicle Accidents" while "Self Inflicted" predominated among intentional injuries. In case of rural females the proportionate mortality due to intentional injuries was higher than that of unintentional (13.2% Vs 11.7%). The leading causes of death were Fires and Self Inflicted respectively among non intentional and intentional injuries. In urban areas the unintentional injuries predominated in both sexes (Males: 23.5% Vs 2.4%, Females: 31.6% Vs 1.8%). Similar to rural areas, the Motor Vehicle Accident was the leading cause of death among unintentional injuries in urban males. In case of females, however, Fires were reported to be the leading cause. Thus Fires emerge as a leading cause of Group III death among females irrespective of the place of residence. Some of the deaths reported under unintentional Fires could be due to suicide or even homicide. It is, however, difficult obtain reliable information on exact cause of death in such circumstances.

#### 45- 59 Years:

5

5

5

5

5

5

5

5

5

2

2

2

3

3

3

7

7

9

9

5

3

3

5

>

3

>

>

)

>

>

In both rural and urban areas the Group II deaths predominated in this age group. It is however, interesting to notice that still a third of total deaths from rural areas were estimated to be due to Group I conditions both among males and females while in urban areas about a quarter of deaths in this age group were estimated to be due to Group I conditions. The most common Group I cause of death was Tuberculosis among males and females irrespective of their place of residence. Among Group II conditions IHD, Cancers and Cirrhosis were estimated to be the leading causes among males in both rural and urban areas. Among females Cancers, Cerebro Vascular Accident and IHD were the leading causes of death. Group III deaths were more or less uniformly distributed. In rural females deaths reported under the category of "Self Inflected" tended to be higher.

#### 60 + years:

Majority of the deaths in this age group were due to Group II conditions. The proportion of Group I deaths among rural males was higher than urban males (25% Vs 22%) while no such difference was observed among females. Tuberculosis, Respiratory Infections and Diarrhoea were the leading Group I cause of deaths in this age group. Among Group II diseases, Ishaemic

Heart Disease, Cerebro Vascular Accidents, Cancers, COPD and Cirrhosis Liver were the leading causes of death among males. More or less similar trends were noticed among females except for lower estimates of deaths due to Cirrhosis. In urban males also deaths due to cirrhosis were less.

C Disability Adjusted Life Years Lost in AP:

i. Total DALYs lost:

Ċ

5.

The preliminary estimates indicate that 17,657,518 total DALYs were lost in Andhra Pradesh during the year 1991<sup>17</sup>. Out of the total DALYs lost 14,037,909 (79.5%) were estimated to be from rural areas and the rest (20.5%) were contributed by residents of urban areas. Considering the fact that rural population constituted 73% of the total State's population, it is evident that disease burden is higher among rural residents. About 52% of the total DALYs lost were contributed by males and the rest by females.

ii. DALYs lost per 1000 population:



When the APBD preliminary results were compared with that of GBD it is evident that DALYs lost per 1000 persons in the State of AP were less than all India estimates (267 Vs. 345) as shown in Fig 2. It is also evident that there is significant difference in the disease burden in Urban and Rural areas (197 Vs. 293). Since GBD estimates are made at country level for all the

Fig 2

Annexure VI

States without distinguishing between urban and rural areas, these trends seem quite plausible. Also, the fact that SCD cause of death pattern - which is based on rural deaths - was used for Group I, II and III distribution in GBD estimates which could have influenced the estimates more in favour of rural areas. DALYs estimated to be lost/1000 population in Urban AP (197) indicates that disease burden among residents of Urban AP is marginally lesser than the GBD estimates for Latin American Crescent (231).

iii. DALYs lost due to YLL:

J

Č

J

)



At the aggregate level DALYs lost due to YLL were responsible for two thirds (68.2%) of total DALYs lost. In both rural and urban areas YLL contributed a majority of total DALYs lost. In the GBD study also similar trends were observed in most of the developing countries. The proportion of DALYs lost due to YLL was higher in rural AP compared to urban AP (69.3% Vs 63.6%). Between the sexes, males lost higher DALYs due to YLL in both rural and urban areas (Rural:Males:72%, Females:66.5%; Urban: Males:67.3%, Females:59.18%).

iv. DALYs lost by major Groups:

-3

)

,

)



More than a half of the total DALYs lost (54%) were due to Group I disorders. Since YLL happens to be the major contributor of the DALYs lost, this trend is not surprising. About 30% and 16% of the total DALYs lost were due to non communicable diseases, injuries and accidents respectively. Between the areas, the burden caused by Group I and Group III was more in rural areas compared to Urban areas. In urban areas also burden caused by Group I diseases is responsible for maximum loss of DALYs. However, the burden caused by Group II disorders was relatively higher in urban areas indicating that the urban residents are in a more advanced phase of epidemiological transition (Fig. 5).





### X. Leading causes of DALY loss

As shown in the above figures the major causes of DALY loss in Group I diseases include Perinatal, ARI and diarrhoeal disorders. Burden due to TB was much higher in case of males. Females residing in rural areas lost nearly double the DALYs /1000 population due to Maternal conditions compared to their urban counterparts. DALYs lost due to Measles, Tetanus were lower in urban areas which could be attributed to better immunisation coverage and cleaner delivery practices. DALYs lost due to diarrhoea in urban areas were nearly half that of rural areas indicating better access to safe water and sanitation.







Leading causes for DALYs lost in Group II





Figure 8

Among the Group II disorders the leading causes of burden include Ischaemic Heart disease, Cancers, Cerebro-vascular accidents, Congenital disorders and Cirrhosis in both rural and urban areas. Falls and Fires were the most common causes of burden among Group III disorder's in case of females residing in rural and urban areas respectively. Self inflicted injuries were more commonly reported from rural areas among both sexes.

### XI. Discussion:

The preliminary results of the APBD study indicate that the epidemiological transition process in AP is at a more advanced stage compared to that of India. Like many other developing countries the DALYs lost due to premature mortality contributed more to the disease burden. The fact that urban residents had lesser burden of disease compared to their rural counter parts is not surprising considering the better access to health care and infrastructural services such as safe water supply. Burden caused by pre-transition disorders such as infectious diseases, maternal and perinatal conditions and nutritional deficiencies contributed to more than a half of the total DALYs lost. This calls for an exhaustive review and total revamping of the existing intervention programmes. The fact that nearly 16% of the DALYs lost were due to injuries and accidents

) )

)

) ]

) )

needs special attention by the policy makers particularly the reported high mortality rates due to falls, fires and suicides.

The APBD study summarises the experience of estimating the disease burden in a developing country with several constraints of data. The basic objective of the study is to estimate the burden making use of the 'available data' rather than waiting for the "best data". The consultative process which involved Disease experts, Researchers, Public health specialists and Health programme managers and the consistency checks enforced at different levels helped to make the best plausible estimates. The study team, however, would like to continue the dialogue with the Reserachers/Disease experts. Based on their feed back on the preliminary estimates next revision will be made.

#### Annexure I

~ 

Í.

3.

Э

Э

Э

Э

Э.

כ כ

)

2.

|    |     |         |       | Life Tat | le for Al | Rural M  | lale     |           |            |       |
|----|-----|---------|-------|----------|-----------|----------|----------|-----------|------------|-------|
| x  | n   | Mx      | ax    | qx       | Px        | lx       | dx       | Lx        | Tx         | ex    |
| 0  | 1   | 0.08    | 0.3   | 0.07     | 0.93      | 100000   | 7396.17  | 94822.68  | 5725792.3  | 57.26 |
| 1  | 4   | 0.01    | 0.4   | 0.03     | 0.97      | 92603.83 | 2972.01  | 363282.49 | 5630969.62 | 60.81 |
| 5  | 5   | 0       | 0.5   | 0.01     | 0.99      | 89631.82 | 803.07   | 446151.4  | 5267687.13 | 58.77 |
| 10 | 5   | 0       | 0.5   | 0.01     | 0.99      | 88828.74 | 795.88   | 442154.03 | 4821535.73 | 54.28 |
| 15 | 5   | 0       | 0.5   | 0.01     | 0.99      | 88032.87 | 1223.89  | 437104.6  | 4379381.7  | 49.75 |
| 20 | - 5 | 0       | 0.5   | 0.02     | 0.98      | 86808.97 | 1718.99  | 429747.4  | 3942277.09 | 45.41 |
| 25 | 5   | 0       | 0.5   | 0.02     | 0.98      | 85089.98 | 1392.5   | 421968.68 | 3512529.7  | 41.28 |
| 30 | 5   | 0       | 0.5   | 0.02     | 0.98      | 83697.49 | 1903.16  | 413729.55 | 3090561.02 | 36.93 |
| 35 | 5   | 0.01    | 0.5   | 0.03     | 0.97      | 81794.33 | 2099.36  | 403723.26 | 2676831.47 | 32.73 |
| 40 | 5   | 0       | 0.5   | 0.02     | 0.98      | 79694.97 | 1928.9   | 393652.61 | 2273108.21 | 28.52 |
| 45 | 5   | 0.01    | 0.5   | 0.05     | 0.95      | 77766.07 | 4015.2   | 378792.37 | 1879455.6  | 24.17 |
| 50 | 5   | 0.01    | 0.5   | 0.07     | 0.93      | 73750.87 | 5022.4   | 356198.38 | 1500663.23 | 20.35 |
| 55 | 5   | 0.02    | 0.5   | 0.1      | 0.9       | 68728.48 | 6918.54  | 326346.04 | 1144464.85 | 16.65 |
| 60 | 5   | 0.05    | 0.5   | 0.21     | 0.79      | 61809.94 | 13047.54 | 276430.86 | 818118.81  | 13.24 |
| 65 | 5   | 0.06    | 0.5   | 0.27     | 0.73      | 48762.4  | 13142.54 | 210955.67 | 541687.95  | 11.11 |
| 70 | 5   | 0.11    | @NA   | 1        | . • 0     | 35619.87 | 35619.87 | 330732.27 | 330732.27  | 9.29  |
|    |     | ******* |       | Life Tab | le for AP | Urban M  | lale     |           |            |       |
| x  | n   | Mx      | ax    | qx       | Px        | lx       | dx       | Lx        | Tx         | ex    |
| 0  | 1   | 0.07    | 0.3   | 0.06     | 0.94      | 100000   | 6217.12  | 95648.02  | 6147638.88 | 61.48 |
| 1  | 4   | 0.01    | 0.4   | 0.03     | 0.97      | 93782.88 | 2369.25  | 369445.31 | 6051990.86 | 64.53 |
| 5  | 5   | 0       | 0.5   | 0        | 1         | 91413.63 | 455.93   | 455928.31 | 5682545.55 | 62.16 |
| 10 | 5   | 0       | 0.5   | 0        | 1         | 90957.7  | 363.1    | 453880.73 | 5226617.24 | 57.46 |
| 15 | 5   | 0.      | 0.5   | 0        | 1         | 90594.59 | 451.84   | 451843.36 | 4772736.52 | 52.68 |
| 20 | -5  | 0       | 0.5   | 0.01     | 0.99      | 90142.75 | 1119.79  | 447914.29 | 4320893.16 | 47.93 |
| 25 | 5   | 0       | 0.5   | 0.01     | 0.99      | 89022.96 | 753.49   | 443231.09 | 3872978.87 | 43.51 |
| 30 | 5   | 0       | 0.5   | 0.01     | 0.99      | 88269.47 | 965.65   | 438933.22 | 3429747.78 | 38.86 |
| 35 | 5   | 0       | _0.5  | 0.01     | 0.99      | 87303.82 | 1256.79  | 433377.11 | 2990814.56 | 34.26 |
| 40 | 5   | 0.01    | 0.5   | 0.04     | 0.96      | 86047.02 | 3374.39  | 421799.14 | 2557437.45 | 29.72 |
| 45 | 5   | 0.01    | 0.5   | 0.03     | 0.97      | 82672.63 | 2683.91  | 406653.38 | 2135638.31 | 25.83 |
| 50 | 5   | 0.02    | 0.5   | 0.07     | 0.93      | 79988.72 | 5819.46  | 385394.94 | 1728984.93 | 21.62 |
| 55 | 5   | 0.02    | 0.5   | 0.11     | 0.89      | 74169.26 | 8429.52  | 349772.49 | 1343589.99 | 18.12 |
| 60 | 5   | 0.03    | 0.5   | 0.15     | 0.85      | 65739.74 | 10104.47 | 303437.52 | 993817.51  | 15.12 |
| 65 | 5   | 0.05    | 0.5   | 0.24     | 0.76      | 55635.27 | 13170    | 245251.35 | 690379.99  | 12.41 |
| 70 | 5   | 0.1     | (à)NA | - 1      | 0         | 42465.27 | 42465.27 | 445128.63 | 445128.63  | 10.48 |

|         | • |      | L     | ife Table | e for AP | Rural Fen | nale     |           |            |       |
|---------|---|------|-------|-----------|----------|-----------|----------|-----------|------------|-------|
| x       | n | Mx   | ax    | qx        | Px       | lx        | dx       | Lx        | Tx         | ex    |
| 0       | 1 | 0.08 | 0.3   | 0.07      | 0.23     | 100000    | 7125.89  | 95011.88  | 6072352.14 | 60.72 |
| 1       | 4 | 0.01 | 0.4   | 0.02      | 0.98     | 92874.11  | 2194.09  | 366230.63 | 5977340,27 | 64,36 |
| 5       | 5 | 0    | 0.5   | 0.01      | 0.99     | 90680.02  | 902.29   | 451144.39 | 5611109.64 | 61.88 |
| 10      | 5 | 0    | 0.5   | 0.01      | 0.99     | 89777.73  | 626.25   | 447323.03 | 5159965.25 | 57.47 |
| 15      | 5 | 0    | 0.5   | 0.01      | 0.99     | 89151.48  | 1327.32  | 442439.11 | 4712642.22 | 52.86 |
| 20      | 5 | 0    | 0.5   | 0.02      | 0.98     | 87824.16  | 1394.03  | 435635.73 | 4270203.11 | 48.62 |
| 25      | 5 | 0    | 0.5   | 0.02      | 0.98     | 86430.13  | 1541.87  | 428295.98 | 3834567.38 | 44.37 |
| 30      | 5 | 0    | 0.5   | 0.01      | 0.99     | 84888.26  | 928.66   | 422119.66 | 3406271.4  | 40.13 |
| 35      | 5 | 0.01 | 0.5   | 0.03      | 0.97     | 83959.6   | 2400.03  | 413797.93 | 2984151.74 | 35.54 |
| 40      | 5 | 0    | 0.5   | 0.02      | 0.98     | 81559.57  | 1814.68  | 403261.17 | 2570353.81 | 31.52 |
| 45      | 5 | 0.01 | 0.5   | 0.03      | 0.97     | 79744.9   | 2240.8   | 393122.49 | 2167092.64 | 27.18 |
| 50      | 5 | 0.01 | 0.5   | 0.05      | 0.95     | 77504.1   | 4111.92  | 377240.68 | 1773970.15 | 22.89 |
| 55      | 5 | 0.02 | 0.5   | 0.08      | 0.92     | 73392.18  | 5543.7   | 353101.64 | 1396729.46 | 19.03 |
| 60      | 5 | 0.02 | 0.5   | 0.11      | 0.89     | 67848.48  | 7711.15  | 319964.53 | 1043627.83 | 15.38 |
| 65      | 5 | 0.04 | 0.5   | 0.2       | 0.8      | 60137.33  | 11845.85 | 271072.05 | 723663.29  | 12.03 |
| 70      | 5 | 0.11 | (a)NA | 1         | 0        | 48291.49  | 48291.49 | 452591.24 | 452591.24  | 9.37  |
|         |   |      | L     | ife Table | for AP   | Urban Fer | nales    |           |            |       |
| x       | n | Mx   | ax    | qx        | Px       | lx        | dx       | Lx        | Tx         | ex    |
| 0       | 1 | 0.05 | 0.3   | 0.05      | 0.95     | 100000    | 4550.3   | 96814.79  | 6707644.78 | 67.0  |
| 1       | 4 | 0    | 0.4   | 0.01      | 0.99     | 95449.7   | 1030.25  | 379326.22 | 6610829.99 | 69.2  |
| 5       | 5 | 0    | 0.5   | 0         | 1        | 94419.45  | 282.83   | 471390.19 | 6231503.77 | 66    |
| 10      | 5 | 0    | 0.5   | 0         | 1        | 94136.62  | 141.1    | 470330.36 | 5760113.58 | 61.1  |
| 15      | 5 | 0    | 0.5   | 0.01      | 0.99     | 93995.52  | 842.17   | 467872.18 | 5289783.23 | 56.2  |
| 20      | 5 | 0    | 0.5   | 0.01      | 0.99     | 93153.35  | 649.8    | 464142.26 | 4821911.05 | 51.7  |
| 25      | 5 | 0    | 0.5   | 0.01      | 0.99     | 92503.55  | 737.08   | 460675.06 | 4357768.79 | 47.1  |
| 30      | 5 | 0    | 0.5   | 0.01      | 0.99     | 91766.47  | 640.12   | 457232.05 | 3897093.73 | 42.4  |
| 35      | 5 | 0    | 0.5   | 0.01      | 0.99     | 91126.35  | 861.61   | 453477.72 | 3439861.68 | 37.7  |
| 40      | 5 | 0    | 0.5   | 0.01      | 0.99     | 90264.74  | 853.46   | 449190.05 | 2986383.96 | 33.0  |
| 45      | 5 | 0    | 0.5   | 0.01      | 0.99     | 89411.28  | 1331.19  | 443728.43 | 2537193.91 | 28.3  |
| 50      | 5 | 0.01 | 0.5   | 0.03      | 0.97     | 88080.09  | 2859.46  | 433251.81 | 2093465.48 | 23.7  |
| 55      | 5 | 0.01 | 0.5   | 0.07      | 0.93     | 85220.63  | 5723.93  | 411793.34 | 1660213.67 | 19.4  |
| 60      | 5 | 0.03 | 0.5   | 0.12      | 0.88     | 79496.7   | 9843.87  | 372873.85 | 1248420.33 | 15.   |
| 121-111 |   | 0.05 | 0.5   | 0.21      | 0.79     | 69652.83  | 14395.86 | 312274.53 | 875546.48  | 12.5  |
| 65      | 5 | 0.05 |       |           |          |           |          |           |            |       |

|        | Ρ      | robability of Dying |         |
|--------|--------|---------------------|---------|
| Region | Sex    | 5q0                 | 45q15   |
| Rural  | Male   | 0.1037              | 0.2979  |
|        | Female | 0.0932              | 0.23895 |
| Urban  | Male   | 0.0859              | 0.2744  |
|        | Female | 0.0558              | 0.1543  |

5.

>

Э

Э.

Э

3.

כ כ

Э

| 1  | I. Communicable, Maternal & Perinatal |    | E. Nutritional/Endocrine          |    | G. Cardiovascular Diseases                               |
|----|---------------------------------------|----|-----------------------------------|----|----------------------------------------------------------|
| -  | A. Infectious & Parasitic             | 31 | 1. Protein-Energy Malnutrition    | 64 |                                                          |
| 1  | 1. Tuberculosis                       | 32 | 2. Iodine Deficiency              | 65 | 2. Ischemic Heart Disease                                |
| -  | 2. STD's Excluding HIV                | 33 | 3. Vitamin A                      | 66 | 3. Cerebrovascular Disease                               |
| 2  | a. Syphilis                           | 34 | 4. Anemias                        | 67 | 4. PEMC                                                  |
| 3  | b. Chlamydia                          |    | II. Noncommunicable               |    | H. Chronic Respiratory Diseases                          |
| 4  | c. Gonorrhea                          | •  | A. Malignant Neoplasms            | 68 | 1. COPD                                                  |
| 5  | 3. HIV                                | 35 | 1. Mouth and Oropharynx           | 69 | 2. Asthma                                                |
| 6  | 4. Diarrhoeal Diseases                | 36 | 2. Esophagus                      |    | I. Diseases of the Digestive System                      |
| -  | 5. Childhood Cluster                  | 37 | 3. Stomach                        | 70 |                                                          |
| 7  | a. Pertussis                          | 38 | 4. Colon/Rectum                   | 71 | 2. Cirrhosis of the Liver                                |
| 8  | b. Polio                              | 39 | 5. Liver                          | /1 | J. Diseases of the Genito-Urinary                        |
| °  | 0.1010                                | 57 | 5. 61101                          |    | System                                                   |
| 9  | c. Diptheria                          | 40 | 6. Pancreas                       | 72 | 1. Nephritis/Nephrosis                                   |
| 0  | d. Measles                            | 41 | 7. Trachea/Bronchus/Lung          | 73 | 2. Benign Prostatic Hypertrophy                          |
| 1  | e. Tetanus                            | 42 | 8. Melanoma and Other Skin        |    | K. Diseases of the Musculo-Skeleta<br>System             |
| 2  | 6. Meningitis                         | 43 | 9. Breast                         | 74 | 1. Rheumatoid Arthritis                                  |
| 3  | 7. Hepatitis                          | 44 | 10. Cervix                        | 75 | 2. Osteoarthritis                                        |
| 4  | 8. Malaria                            | 45 | 11. Corpus Uteri                  | 76 | L. Congenital Abnormalities                              |
|    | 9. Tropical Cluster                   | 46 | 12. Ovary                         |    | M. Oral Health                                           |
| 15 | a. Lymphatic Filariasis               | 47 | 13. Prostate                      | 77 | 1. Dental Caries                                         |
| 16 | 10. Leprosy                           | 48 | 14. Bladder                       | 78 | 2. Periodontal Disease                                   |
| 17 | 11. Trachoma                          | 49 | 15. Lymphoma                      | 79 | 3. Edentulism                                            |
|    | 12. Intestinal Helminths              | 50 | 16. Larynx                        |    | III. Injuries                                            |
| 8  | a. Ascanis                            | 51 | B. Other Neoplasm                 |    | A. Unintentional                                         |
| 9  | b. Trichuris                          | 52 | C. Diabetes Melltus               | 80 | 1. Motor Vehicle Accidents                               |
| 20 | c. Hookworm                           | 53 | D. Other Endocrine                | 81 | 2. Poisonings                                            |
| 1  | 13. Japanese encephalitis             |    | E. Neuro-Psychiatric              | 82 | 3. Falls                                                 |
|    | B. Respiratory Infections             | 54 | 1. MAD                            | 83 | 4. Fires                                                 |
| 2  | 1. Acute Respiratory Infections       | 55 | 2. BAD                            | 84 | 5. Drowning                                              |
| 3  | 2. Otitis Media                       | 56 | 3. Psychoses                      | 85 | 6. Venamous animals and plants as<br>cause of poisoining |
|    | C. Maternal Conditions                | 57 | 4. Epilepsy                       | 86 | 7. Foreign body and accidental aspiration                |
| 24 | 1. Hemmorhage                         | 58 | 5. Alcohol Dependence             | 87 | 8. Electric Shock                                        |
| 25 | 2. Sepsis                             | 59 | 6. Alzheimer's and other dementia |    | B. Intentional                                           |
| 26 | 3. Eclampsia                          | 60 | 7. Parkinson's Disease            | 88 | 1. Self-inflicted                                        |
| 7  | 4. Hypertension                       | 61 | 8. Drug Dependence                | 89 | 2. Homicide and Violence                                 |
| 8  | 5. Obstructed Labor                   |    | F. Sense Organ                    | 90 | 3. Legal intervention                                    |
| 9  | 6. Abortion                           | 62 | 1. Glaucoma-related Blindness     |    |                                                          |

Ć

Э

5 5

כ כ כ

Э

Э

Э

Э

Э

Э

|          | Distribution of as reported l           | 1     |         |      | 1          |
|----------|-----------------------------------------|-------|---------|------|------------|
| SCD CODE | CAUSE OF DEATH                          | Males | Females | ILA  | Not class. |
| 100      | ACCIDENTS & INJURIES NOT : CLASSIFIABLE | 66    | 39      | 105  | 105        |
| 111      | SNAKE BITE                              | 53    | 36      | 89   | _          |
| 112      | SCORPION BITE                           | 8     | 3       | 11   |            |
| 113      | RABIES                                  | 19    | 14      | 33   |            |
| 121      | DROWNING                                | 71    | 55      | 126  |            |
| 122      | FALL FROM HEIGHT                        | 38    | 24      | 62   |            |
| 123      | VEHICULAR ACCIDENTS                     | 128   | 42      | 170  |            |
| 124      | BURNS                                   | 20    | 46      | 66   |            |
| 130      | SUICIDE                                 | 162   | 122     | 284  |            |
| 140      | HOMICIDE                                | 22    | 10      | 32   |            |
| 151      | EXCESSIVE HEAT                          | 8     | 15      | 23   |            |
| 152      | EXCESSIVE COLD                          | 0     | 0       | 0    |            |
| 153      | NATURAL CALAMITY                        | 10    | 13      | 23   |            |
| 200      | MATERNAL : NOT CLASSIFIABLE             | 0     | 25      | 25   | 25         |
| 210      | ABORTION                                | 0     | 9       | 9    |            |
| 221      | TOXAEMIA                                | 0     | 13      | 13   |            |
| 222      | ANAEMIA                                 | 0     | 13      | 13   |            |
| 231      | BLEEDING OF PREGNANCY                   | 0     | 28      | 28   |            |
| 232      | MALPOSITION OF CHILD                    | 0     | 8       | 8    |            |
| 233      | PUERPERAL SEPSIS                        | 0     | 5       | 5    |            |
| 300      | FEVERS : NOT CLASSIFIABLE               | 225   | 223     | 448  | 448        |
| 311      | MALARIA                                 | 8     | 6       | 14   |            |
| 321      | INFLUENZA                               | 14    | 22      | 36   |            |
| 331      | TYPHOID                                 | 33    | 36      | 69   |            |
| 400      | DIGESTIVE DISORDERS : NOT CLASSIFIABLE  | 35    | 28      | 63   | 63         |
| ~ 411    | GASTRO-ENTERITIS                        | 71    | 108     | 179  |            |
| 412      | CHOLERA                                 | 4     | 5       | 9    |            |
| 413      | FOOD POISONING                          | 22    | 9       | 31   |            |
| 414      | DYSENTERY                               | 59    | 66      | 125  |            |
| 421      | PEPTIC ULCER                            | 64    | 28      | . 92 |            |
| 431      | ACUTE ABDOMEN                           | 87    | 73      | 160  |            |
| 500      | COUGHS : NOT CLASSIFIABLE               | 22    | 25      | 47   | 47         |
| 511      | TUBERCULOSIS OF LUNGS                   | 432   | 196     | 628  |            |
| 513      | BRONCHITIS & ASTHMA                     | 578   | 346     | 924  |            |
| 521      | PNEUMONIA                               | 31    | 20      | 51   |            |
| 530      | WHOOPING COUGH                          | 6     | 4       | 10   |            |
| 600      | CNS DISORDERS : NOT CLASSIFIABLE        | 24    | 16      | 40   | 40         |
| 610      | PARALYSIS                               | 344   | 259     | 603  | -          |
| 620      | MENINGITIS                              | 20    | 21      | . 41 |            |
| 630      | CONVULSIONS                             | 76    | 64      | 140  |            |
| 700      | CONGESTIVE & OTHER LEART DISEASES       | 156   | 99      | 255  | 255        |
| 710      | ANAEMIA                                 | 87    | 98      | 185  |            |
| 730      | HEART ATTACK                            | 489   | 232     | 721  |            |

)

)

) )

| 800  | OTHER MEDICALLY CERTIFIED DEATHS                    | 28   | 17   | 45    |      |
|------|-----------------------------------------------------|------|------|-------|------|
| 811  | CIRRHOSIS & CHRONIC LIVER DISEASES                  | 42   | 24   | 66    |      |
| 812  | JAUNDICE                                            | 151  | 92   | 243   |      |
| 821  | CHICKENPOX                                          | 0    | 1    | 1     |      |
| 822  | MEASLES                                             | 8    | 21   | 29    |      |
| 823  | LEPROSY                                             | 23   | 8    | 31    |      |
| 831  | TETANUS                                             | 8    | 13   | 21    |      |
| 841  | POLIOMYELITIS                                       | 2    | 3    | 5     |      |
| 851  | MENTAL DISEASE                                      | 18   | 21   | 39    |      |
| 861  | CANCER                                              | 189  | 251  | 440   |      |
| 871  | DIABETES                                            | 55   | 28   | 83    |      |
| 881  | HYPERPLASIA OF PROSTATE                             | 15   | 9    | 24    |      |
| 882  | URAEMIA                                             | 32   | 12   | 44    |      |
| 890  | OBSTRUCTED HERNIA                                   | 4    | n    | 4     | _    |
| 900  | INFANT DEATHS : NOT CLASSIFIABLE                    | 213  | 176  | 389   | 389  |
| 910  | PREMATURITY                                         | 174  | 146  | 320   |      |
| 922  | CONGENITAL MALFORMATION                             | 15   | 7    | 22    |      |
| 923  | BIRTH INJRY                                         | 12   | 4    | 16    | 130  |
| 931  | RESPIRATORY INFECTIONS OF THE NEW BORN<br>PERINATAL | 87   | 79   | 166   |      |
| 932  | CORD INFECTION                                      | 13   | 13   | 26    |      |
| 933  | DIARRHOEA OF NEW BORN                               | 41   | 49   | 90    |      |
| 1000 | SENILITY                                            | 1357 | 1313 | 2670  | 2670 |
|      | Total                                               | 5979 | 4791 | 10770 | 4042 |

| SCD code | Description                                 | No. subjected for<br>E O & F E | No. Classified |
|----------|---------------------------------------------|--------------------------------|----------------|
| 1.00     | Accidents and injuries not classifiable     | 27                             | 27             |
| 2.00     | Maternal not classifiable                   | 6                              | 6              |
| 3.00     | Fevers not classifiable                     | 107                            | 107 ·          |
| 4.00     | Digestive disorders not classifiable        | 12                             | 12             |
| 5.00     | Coughs not classifiable                     | 10                             | 10             |
| 6.00     | CNS disorders not classifiable              | 4                              | 4              |
| 7.00     | Congestive and other heart diseases         | 53                             | 53             |
| 8.00     | Burns                                       | - 11                           | 11             |
| 9.00     | Causes peculiar to infancy not classifiable | 71                             | 68             |
| 10.00    | Senility                                    | 139                            | 136            |
|          | TOTAL                                       | 440                            | 434            |

)

)

)

)

)

|              |         | Algori | inms used | to classify th         | e SCD estimated deaths responsible for >0.1%                                                                                                            |
|--------------|---------|--------|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCD<br>Codes | Deaths  | %      | Cum %     | Diseases               | Solution                                                                                                                                                |
| 1.13         | 31.61   | 0.29%  | 0.29%     | Rabies                 | Added to Group la total                                                                                                                                 |
| 1.51         | 32.15   | 0.30%  | 0.59%     | Excessive Heat         | Added to Unintentional Injuries (Group IIIa) total                                                                                                      |
| 1.53         | 22.33   | 0.21%  | 0.80%     | Natural<br>Calamity    | Added to Unintentional Injuries (Group IIIa) total                                                                                                      |
| 4.31         | 179.89  | 1.67%  | 2.47%     | Acute Abdomen          | Added to Digestive (Group II i) total                                                                                                                   |
| 5.13         | 1321.68 | 12.28% | 14.75%    | Bronchitis &<br>Asthma | To follow the distribution of Bronchitis & asthma from 26 countries                                                                                     |
| 6.1          | 1217.91 | 11.34% | 26.09%    | Paralysis              | > 45 yrs to include in Stroke, < 45 to distribute in meningitis and encephalitis as per ICD distribution                                                |
| 6.3          | 158.21  | 1.48%  | 27.57%    | Convulsions            | <15 as per ICD distribution in meningitis & encephalitis, 15-45:<br>Epilepsy, 45-60:50% epilepsy, 50% stroke, >60: Stroke                               |
| 8.12         | 267.49  | 2.48%  | 30.05%    | Jaundice               | To distribute <5 yrs. under hepatitis and for the remaining age groups<br>to follow ICD age wise distribution of Hepatitis, Cirrhosis & Cancer<br>Liver |
| 8.51         | 114.26  | 1.06%  | 31.11%    | Mental Disease         | To include in Neuropsychiatric total                                                                                                                    |
| 8.61         | 831     | 7.74%  | 38.86%    |                        | To include in Cancer total                                                                                                                              |

J

2 2

Э

Э

Э

Э

)

) )

)

|                             | nnexure |       |        |                                                                        | DEATH IN URBAN AP                                                                                                                                    |
|-----------------------------|---------|-------|--------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |         |       |        |                                                                        | onsible for >0.1% in Urban AP                                                                                                                        |
| ICD Codes                   |         | %     | Cum%   |                                                                        | Solution                                                                                                                                             |
| 71                          | 1092    | 0.16% |        | Rabies                                                                 | To move over to Group Ia total                                                                                                                       |
| 161                         | 1378    | 0.21% | 0.37%  | Malignant neoplasm of<br>larynx                                        | To add to the APBD list                                                                                                                              |
| 200,202,203                 | 505     | 0.08% | ().45% | All other Malignant<br>neoplasm of lymphatic and<br>haempoietic tissue | To combine with Hogdkins and<br>Leukaemias                                                                                                           |
| 190-199                     | 5860    | 0.88% | 1.33%  | Malignant neoplasm of other<br>and unspecified sites                   | To proportionately distribute to all<br>listed cancer sites including 'other<br>cancers '                                                            |
| 264-269                     | 4242    | 0.64% | 1.97%  | All other Nutritional deficiencies                                     | To move over to Group IIE totals                                                                                                                     |
| 286-289                     | 658     | 0.10% |        | All other diseases of blood<br>and blood forming organs                | To move over to Group IIE totals                                                                                                                     |
| 290                         | 801     | 0.12% |        | psychotic conditions                                                   | To move over to dementias including Alzheimers                                                                                                       |
| 302,-316                    | 1100    | 0.17% | 2.36%  | All other Mental disorders                                             | To add to Group IIF(Neuropsychiatric<br>for the present and to develop some<br>algorithm to get Alzheimers                                           |
| 323-339,341-<br>144,346-359 | 10949   | 1.65% |        | All other diseases of<br>Nervous System                                | To add to Group IIF(Neuropsychiatric<br>for the present and to develop some<br>algorithm to get deaths due to<br>alcoholism and drug dependence      |
| 02-404                      | 2154    | 0.32% | 4.33%  | Hypertensive heart Diseases                                            | To add to APBD list                                                                                                                                  |
| 01,405                      | 4545    | 0.68% | 5.02%  | All other Hypertensive<br>Diseases                                     | To add to Hypertensive diseases list                                                                                                                 |
| .15-429                     | 40846   | 6.16% |        | Circulation and other forms<br>of heart disease                        | To add to the Group<br>IIG(Cardiovascular Total) for the<br>present and develop appropriate<br>algorithm on the basis of autopy series<br>from India |
| 44                          | 838     | 0.13% | t      | hrombosis                                                              | To add to the Group<br>IIG(Cardiovascular Total) for the<br>present and develop appropriate<br>algorithm on the basis of autopy series<br>from India |
| 11-443,446-<br>18           | 1413    | 0.21% |        | Arterioles & capillaries                                               | To add to the Group<br>(IG(Cardiovascular Total) for the<br>present and develop appropriate<br>algorithm on the basis of autopy series<br>from India |

)

)

)

)

Э

Э

| 455                                                                                 | 718   | 0.11% | 11 620/ | Haemorrhoids                                                           | To add to the Group                                                                                                                                  |
|-------------------------------------------------------------------------------------|-------|-------|---------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     | /10   |       |         |                                                                        | IIG(Cardiovascular Total) for the<br>present and develop appropriate<br>algorithm on the basis of autopy series<br>from India                        |
| 445,449,450,<br>456-459                                                             | 982   | 0.15% | 11.77%  | All other diseases of<br>Circulatory system                            | To add to the Group<br>IIG(Cardiovascular Total) for the<br>present and develop appropriate<br>algorithm on the basis of autopy series<br>from India |
| 490-496                                                                             | 19367 | 2.92% | 14.69%  | Bronchitis, Chronic and<br>unspecified emphysema and<br>asthama        | To use alogorythem developed on the<br>basis of observed relationship between<br>bronchitis and asthma in 26 developed<br>countries                  |
| 511 .                                                                               | 725   | 0.11% | 14.80%  | Pleurisy                                                               | To move to Group IIH(Respiratory) for the present                                                                                                    |
| 488,489,497-<br>510,512-519                                                         | 9638  | 1.45% | 16.25%  | All other Diseases of Respiratory system                               | To move to Group IIH(Respiratory) for the present                                                                                                    |
| 560                                                                                 | 2481  | 0.37% | 16.62%  | Intestinal obstruction<br>without Mention of Hernia                    | To add to the APBD list                                                                                                                              |
| 567                                                                                 | 2103  | 0.32% | 16.94%  | Peritonitis.                                                           | To add to the APBD list                                                                                                                              |
| 530,534,536-<br>539,544-549,<br>554-559,561-<br>566,568-570,<br>572,573,576-<br>579 | 12466 | 1.88% | 18.82%  | All other diseases of the<br>other parts of the digestive<br>system    | To move to Group II I (Digestive) total<br>for the present and to develop<br>algorithm                                                               |
| 591,593,595-<br>599                                                                 | 715   | 0.11% | 18.93%  | All other diseases of Urinary<br>System                                | To move to the Group II J (Genito<br>Urinary) total                                                                                                  |
| 797                                                                                 | 26624 | 4.01% | 22.94%  | Senility without mention of<br>psychosis                               | To follow the standard algorithm<br>already developed under GBD to<br>distribute to Group I& II                                                      |
| 780-796,798,<br>799                                                                 | 44754 | 6.74% | 29.68%  | All other sign symptoms and<br>ill defined conditions                  | To follow the standard algorithm<br>already developed under GBD to<br>distribute to Group I& II                                                      |
| E900-E909,E<br>911-E918,E9<br>21,E923-E92<br>9                                      | 4072  | 0.61% | 30.30%  | All other accidents including<br>late effects                          | To add to Group IIIa (unintentional)<br>for the present                                                                                              |
| E980-E981                                                                           | 7711  | 1.16% | 31.46%  | Injury undetermained<br>whether accidentally or<br>purposely inflicted | To proportionately distribute to Group<br>IIIa & IIIb deaths                                                                                         |
| E970-E979                                                                           | 1136  | 0.17% | 31.63%  | All other types of violence                                            | To add to the Group IIIb total and include under War/legal intervention                                                                              |

UUUUUUU

Э.

5.

いて

5 0

)

)

| Group        | Disease                | India | AP  |
|--------------|------------------------|-------|-----|
| Communicable | Tuberculosis           | ***   | *** |
|              | STD excluding HIV      | **    |     |
|              | HIV                    | **    |     |
|              | Diarrhoea              | ***   | *** |
|              | Childhood cluster      | **    | **  |
|              | Meningitis             | *     | *   |
|              | Japanese Encephalitis  | ***   | *** |
|              | Hepatitis              | **    | **  |
|              | Enteric Fever          | *     | *   |
|              | Malaria                | ***   | *** |
|              | Filaria                | ***   | *** |
|              | Leprosy                | ***   | *** |
|              | Trachoma               | **    | *   |
|              | Intestinal Parasites   | **    | **  |
|              | Acute Resp. Infections | * *** | *** |
| Maternal     | Maternal               | *     | *   |
| Perinatal    | Perinatal              | *     | *   |
| Nutritional  | PEM                    | ***   | *** |
|              | Anaemia                | ***   | *** |
|              | IDD                    | ***   | *** |
|              | Vita. A deficiency     | ***   | *** |

Quality of data available for APBD estimates<sup>1</sup> II

)

)

| Group               | Disease                                    | India | AP                                     |
|---------------------|--------------------------------------------|-------|----------------------------------------|
| Cancers             | Cancers                                    | **    | *                                      |
| Endocrinal          | Diabetes                                   | ***   | **                                     |
| Neuro-psychiatirc   | Major Affective Disorders                  | **    |                                        |
|                     | Bipolar Affective Disorders                |       |                                        |
|                     | Psychosis                                  | **    |                                        |
|                     | Epilepsy                                   | **    |                                        |
|                     | Alcoholism                                 | *     |                                        |
|                     | Drug dependence                            | *     |                                        |
|                     | Dementias                                  |       |                                        |
| Sense organs        | Cataract                                   | ***   | ***                                    |
|                     | Glaucoma                                   | *     |                                        |
| Cardiovascular      | Rheumatic Heart disease                    | ***   | ***                                    |
|                     | Ischaemic heart disease                    | **    |                                        |
|                     | Cerebrovascular disease                    | *     |                                        |
|                     | Peri Endo Myocarditis and cardiomyopathies | *     |                                        |
| Chronic Respiratory | COPD                                       | *     |                                        |
|                     | Asthma                                     | *     |                                        |
| Digestive           | Peptic Ulcer                               | *     |                                        |
|                     | Cirrhosis of liver                         | *     |                                        |
|                     | Hernia                                     | *     |                                        |
|                     | · Appendicitis                             | *.    |                                        |
| Genitourinary       | Nephritis & Nephrosis                      | **    | *                                      |
|                     | ВРН                                        | *     |                                        |
| Muskulo Skeletal    | Rheumatoid arthritis                       | *     |                                        |
|                     | Osteoarthritis                             | *     | •• · · · · · · · · · · · · · · · · · · |
| Congenital          | Congenital                                 | *     |                                        |
| Oral Health         | Dental carries                             | ***   | ***                                    |
|                     | Periodontal disease                        | ***   | ***                                    |
|                     | Eduntulism                                 | *     | *                                      |

# Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

4444444444444

Y CE

OSCHWEN & BOOM

## Annexure VI Disability Adjusted Life Years(DALYs)

(1) (1 () 11 it

000000

()

| REGI<br>ON | N   | DISEASE                                 | ALL        | ALLM      | ALLF      | MO        | M5      | M15       | M45       | M60       | F0        | F5      | F15       | F45      | ONER    |
|------------|-----|-----------------------------------------|------------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|----------|---------|
| AP         | 0   | Sum                                     | 17,657,518 | 9,159,641 | 8,497,877 | 3,395,371 | 754,549 | 2,511,708 | 1,318,827 | 1,179,187 | 3,297,589 | 665,098 | 2,476,426 | 915,340  | 1,143,4 |
| AP .       | 1   | I.Communicable, Maternal &<br>Perinatal | 9,528,102  | 4,852,049 | 4,676,054 | 2,880,158 | 394,568 | 954,294   | 376,283   | 246,746   | 2,669,881 | 391,872 |           | 273,742  | 193,8   |
| AP         | 2   | A. Infectious & Parasitic               | 4,513,587  | 2,571,091 | 1,942,496 | 1,025,683 | 271,704 | 798,072   | 320,827   | 154,805   | 919,953   | 243,123 | 494,903   | 183,085  | 101,4   |
| AP         | 3   | 1. Tuberculosis                         | 1,370,483  | 910,529   | 459,953   | 12,156    | 46,750  | 489,094   | 252,985   | 109,545   | 8,373     | 37,968  | 233,567   | 128,505  | 51,5    |
| AP         | 4   | 2. STD's Excluding HIV                  | 91,155     | 31,776    | 59,379    | 1,144     | 284     | 29,910    | 394       | 44        | 1,001     | 500     | 56,999    | 793      | 51,0    |
| AP         | 5   | a. Syphilis                             | 59,711     | 28,558    | 31,153    | 1,057     | 244     | 26,895    | 326       | 36        | 944       | 260     | 29,323    | 567      |         |
| AP         | 6   | b. Chlamydia                            | 24,226     | 2,769     | 21,457    | 6         | 32      | 2,674     | 50        | 7         | 8         | 192     | 21,010    | 221      |         |
| AP         | 7   | c. Gonorrhea                            | 7,219      | 450       | 6,769     | 82        | 8       | 341       | 17        | 1         | 49        | 48      | 6,666     | 6        |         |
| AP         | 8   | 3. HIV                                  | 21,402     | 12,939    | 8,463     | 267       | 52      | 12,052    | 501       | 68        | 274       | 56      | 8,080     | 42       |         |
| AP         | . 9 | 4. Diarrhoeal Diseases                  | 1,207,987  | 632,288   | 575,699   | 490,071   | 39,856  | 67,179    | 15,030    | 20,152    | 444,097   | 38,994  | 60,016    | 13,404   | 19,1    |
| AP         | 10  | 5. Childhood Cluster                    | 818,806    | 424,095   | 394,711   | 334,488   | 40,474  | 42,519    | 4,944     | 1,669     | 307,551   | 43,445  | 37,443    | 4,594    | 1,6     |
| AP         | 11  | a. Pertussis                            | 118,387    | 61,714    | 56,673    | 55,984    | 5,730   | 0         | · 0       | 0.        | 51,149    | 5,524   | 0         | 0        |         |
| AP         | 12  | b. Polio                                | 96,821     | 51,602    | 45,219    | 50,421    | 1,021   | 160       | 0         | 0         | 44,176    | 902     | 141       | 0        |         |
| AP         | 13  | c. Diptheria                            | 8,503      | 4,358     | 4,145     | 3,312     | 841     | 205       | 0         | 0         | 3,093     | 835     | 217       | 0        |         |
| AP         | 14  | d. Measles                              | 358,030    | 176,876   | 181,154   | 155,888   | 20,988  | 0         | 0         | 0         | 156,552   | 24,601  | 0         | <u>د</u> |         |
| AP         | 15  | e. Tetanus                              | 237,065    | 129,545   | 107,520   | 68,883    | 11,895  | 42,154    | 4,944     | 1,669     | 52,581    | 11,583  | 37,085    | 4,594    | 1,6     |
| AP         | 16  | 6. Meningitis                           | 207,971    | 124,063   | 83,909    | 56,369    | 29,857  | 32,312    | 3,739     | 1,785     | 47,156    | 14,294  | 20,023    | 1,855    | 5       |
| AP         | 17  | 7. Hepatitis                            | 152,601    | 89,807    | 62,793    | 49,545    | 6,551   | 23,761    | 7,250     | 2,700     | 31,798    | 3,752   | 20,181    | 4,489    | 2,5     |
| AP         | 18  | 8. Malaria                              | 49,654     | 28,344    | 21,310    | 5,227     | 4,514   | 16,178    | 1,919     | 506       | 3,878     | 3,860   | 11,725    | 1,461    | 3       |
| AP         | 19  | 9. Tropical Cluster                     | 39,766     | 25,176    | 14,590    | 0         | 0       | 10,227    | 13,789    | 1,160     | 0         | 0       | 0         | 12,434   | 2,1     |
| AP         | 20  | a. Lymphatic Filariasis                 | 39,766     | 25,176    | 14,590    | 0         | 0       | 10,227    | 13,789    | 1,160     | 0         | 0       | 0         | 12,434   | 2,1     |
| AP         | 21  | 10. Leprosy                             | 39,510     | 19,370    | 20,140    | 2,071     | 15,900  | 1,121     | 254       | 24        | 2,032     | 16,855  | 1,094     | 131      |         |
| AP         | 22  | 11. Trachoma                            | 24,501     | 8,715     | 15,786    | 0         | 0       | 3,880     | 2,826     | 2,008     | . 0       | 0       | 7,494     | 1,328    | 6,9     |
| AP         | 23  | 12. Intestinal Helminths                | 150,564    | 76,063    | 74,501    | 306       | 61,471  | 12,491    | 1,254     | 541       | 301       | 59,571  | 12,959    | 1,110    | 5       |
| AP         | 24  | a. Ascaris                              | 81,267     | 41,290    | 39,977    | 306       | 40,984  | 0         | 0         | 0         | 301       | 39,676  | 0         | 0        |         |
| AP         | 25  | b. Trichuris                            | 36,741     | 18,677    | 18,064    | 0         | 18,383  | 225       | 70        | 0         | 0         | 17,859  | 139       | 65       |         |
| AP         | 28  | c. Hookworm                             | 32,555     | 16,096    | 16,460    | 0         | 2,104   | 12,266    | 1,184     | 541       | 0         | 2,035   | 12,820    | 1,044    | 54      |
| AP         | 27  | 13. Japanese encephalitis               | 57,766     | 37,501    | 20,265    | 25,379    | 4,755   | 5,911     | 1,000     | 456       | 13,974    | 2,216   | 3,018     | 495      | 56      |
| AP         | 28  | B. Respiratory Infections               | 1,825,738  | 921,613   | 904,125   | 649,584   | 60,325  | 100,751   | 30,221    | 80,731    | 646,956   | 68,843  | 83,300    | 31,365   | 73,66   |
| AP         | 29  | 1. Acute Respiratory<br>Infections      | 1,764,354  | 890,665   | 873,689   | 618,637   | 60,325  | 100,751   | 30,221    | 80,731    | 616,520   | 68,843  | 83,300    | 31,365   | 73,66   |

303 07949

32

Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| AP | 30 2. Otitis Media                     | 61,384    | 30,947    | 30,436    | 30,947  | 0       | 0       | 0       | 0       | 30,436  | 0       | 0       | 0       | 0       |
|----|----------------------------------------|-----------|-----------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| AP | 31 C. Maternal Conditions              | 498,163   | 0         | 498,163   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 464,622 | 29,163  | 4,378   |
| AP | 32 1. Hemmorhage                       | 27,245    | 0         | 27,245    | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 25,811  | 1,434   | 0       |
| AP | 33 2. Sepsis                           | 169,389   | 0         | 169,389   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 156,273 | 13,115  | 0       |
| AP | 34 3. Eclampsia                        | 4,623     | 0         | 4,623     | . 0     | 0       | 0       | • 0     | 0       | 0       | 0       | 4,552   | 72      | 0       |
| AP | 35 4. Hypertension                     | 6,308     | 0         | 6,308     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 6,308   | 0       | 0       |
| AP | 38 5. Obstructed Labor                 | 125,808   | 0         | 125,808   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 115,518 | 10,290  | 0       |
| AP | 37 6 Abortion ,                        | 37,012    | 0         | 37,012    | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 35,820  | 1,192   | 0       |
| AP | 38 D. Perinatal Conditions             | 1,778,021 | 937,262   | 840,759   | 937,262 | 0       | 0       | 0       | 0       | 840,759 | 0       | 0       | Ó       | 0       |
| AP | <sup>39</sup> D. Nutritional/Endocrine | 912,593   | 422,083   | 490,510   | 267,630 | 62,539  | 55,470  | 25,235  | 11,209  | 262,213 | 79,907  | 103,867 | 30,130  | 14,393  |
| AP | 40 1. Protein-Energy<br>Malnutrition   | 374,260   | 188,358   | 185,903   | 178,789 | 1,800   | 4,738   | 1,257   | 1,773   | 177,529 | 2,682   | 2,856   | 677     | 2,159   |
| AP | 41 2. Iodine Deficiency                | 91,683    | 46,383    | 45,299    | 40,510  | 1,702   | 2,961   | 824     | 387     | 39,728  | 1,973   | 3,031   | 329     | 239     |
| AP | 42 3. Vitamin A                        | 37,660    | 19,324    | 18,336    | 19,324  | 0       | 0       | 0       | 0       | 18,336  | 0       | 0       | 0       | 0       |
| AP | 43 4. Anemias                          | 408,990   | 168,018   | 240,972   | 29,007  | 59,037  | 47,771  | 23,154  | 9,048   | 26,620  | 75,252  | 97,980  | 29,125  | 11,995  |
| AP | 44 II. Noncommunicable                 | 5,288,634 | 2,849,878 | 2,438,757 | 301,009 | 119,392 | 821,191 | 791,123 | 817,163 | 260,576 | 102,481 | 745,160 | 552,500 | 778,041 |
| AP | 45 A. Malignant Neoplasms              | 595,259   | 304,933   | 290,326   | 7,645   | 6,336   | 102,889 | 120,194 | 67,869  | 2,274   | 2,366   | 108,414 | 132,726 | 44,546  |
| AP | 46 1. Mouth and Oropharynx             | 48,307    | 32,205    | 16,103    | ÷ 0     | 0       | 9,571   | 14,191  | 8,442   | 0       | 0       | 6,270   | 7,115   | 2,718   |
| AP | 47 2. Esophagus                        | 67,634    | 40,196    | 27,439    | 0       | 0       | 12,683  | 18,453  | 9,060   | 0       | 0       | 10,148  | 11,988  | 5,302   |
| AP | 48 3. Stomach                          | 59,861    | 40,579    | 19,282    | 2       | 6       | 13,868  | 16,734  | 9,970   | 0       | 0       | 7,236   | 9,137   | 2,908   |
| AP | 49 4. Colon/Rectum                     | 26,296    | 15,121    | 11,175    | . 0     | 24      | 3,122   | 7,528   | 4,447   | 29      | 71      | 1,810   | 6,125   | 3,140   |
| AP | 50 5. Liver                            | 22,310    | 15,779    | 6,530     | 126     | 190     | 3,933   | 8,774   | 2,755   | 28      | 94      | 1,593   | 3,231   | 1,585   |
| AP | 51 6. Pancreas                         | 13,021    | 8,259     | 4,761     | 0       | 0       | 1,850   | 4,058   | 2,351   | 0       | 26      | 1,454   | 2,376   | 906     |
| AP | 52 7.<br>Trachea/Bronchus/Lung         | 64,529    | 55,845    | 8,684     | 30      | 24      | 17,687  | 27,856  | 10,248  | 28      | 28      | 921     | 5,648   | 2,060   |
| AP | 53 .8. Melanoma and Other<br>Skin      | 1,663     | 934       | 729       | 13      | 31      | 196     | 407     | 287     | 52      | 6       | 210     | 316     | 145     |
| AP | 54 9. Breast                           | 56,808    | 0         | 56,808    | 0       | 0       | 0       | 0       | 0       | 1       | 2       | 23,913  | 27,210  | 5,683   |
| AP | <sup>55</sup> 10. Cervix .             | 84,364    | 0         | 84,364    | 0       | 0       | 0       | · 0     | 0       | 0       | 0       | 32,830  | 42,727  | 8,806   |
| AP | 58 11. Corpus Uteri                    | 5,545     | 0         | 5,545     | 0       | 0       | 0       | ·0      | 0       | 0       | 0       | 2,394   | 1,539   | 1,612   |
| AP | 57 12. Ovary                           | 12,349    | 0         | 12,349    | 0       | 0       | 0       | 0       | . 0     | 72      | 72      | 5,184   | 5,715   | 1,305   |
| AP | 58 13. Prostate                        | 11,903    | 11,903    | 0         | 0       | 0       | 190     | 2,715   | 8,998   | 0       | 0       | . 0     | 0       | 0       |
| AP | 59 14. Bladder                         | 11,111    | 6,899     | 4,212     | 0       | 24      | 1,362   | 2,659   | 2,854   | 29      | 70      | 317     | 1,139   | 2,658   |
| AP | <sup>60</sup> 15. Lymphoma             | 83,864    | 59,962    | 23,902    | 7,473   | 6,037   | 34,399  | 7,765   | 4,287   | 2,036   | 1,997   | 11,816  | 4,456   | 3,596   |
| AP | 61 16. Larynx                          | 25,694    | 17,251    | 8,443     | 0       | 0       | 4,029   | 9,053   | 4,169   | 0       | 0       | 2,316   | 4,004   | 2,123   |
| AP | 62 B. Other Neoplasm                   | 11,142    | 7,357     | 3,785     | 731     | 639     | 5,054   | 558     | 374     | 259     | 96      | 2,653   | 522     | 254     |
| AP | 63 C. Diabetes Melltus                 | 118,907   | 67,165    | 51,743    | 66      | 115     | 17,100  | 21,830  | 28,053  | 0       | 30      | 13,990  | 12,108  | 25,614  |

50'

# Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| AP - | 64 | D. Other Endocrine                            | 1,091     | 663     | 428     | 66     | 38     | 337     | 150     | 71      | 0      | 0      | 153     | 119      | 156     |
|------|----|-----------------------------------------------|-----------|---------|---------|--------|--------|---------|---------|---------|--------|--------|---------|----------|---------|
| AP   | 65 | E. Neuro-Psychiatric                          | 915,987   | 478,911 | 437,076 | 14,619 | 40,002 | 273,818 | 83,230  | 67,243  | 13,532 | 26,704 | 286,262 | 52,890   | 57,688  |
| AP   | 66 | 1. MAD                                        | 255,457   | 85,506  | 169,950 | 0      | 0      | 73,194  | 10,128  | 2,185   | 0      | 0      | 145,187 | 20,122   | 4,641   |
| AP   | 87 | 2. BAD                                        | 17,122    | 8,660   | 8,462   | 0      | 0      | 7,528   | 928     | 204     | 0      | 0      | 7,311   | 921      | 230     |
| AP   | 68 | 3. Psychoses                                  | 178,392   | 82,404  | 95,988  | 23     | 116    | 76,448  | 3,708   | 2,109   | 25     | 139    | 93,003  | 733      | 2,088   |
| AP   | 69 | 4. Epilepsy                                   | 152,529   | 90,673  | 61,856  | 9,917  | 36,200 | 38,718  | 3,641   | 2,198   | 6,757  | 24,260 | 26,823  | 2,653    | 1,362   |
| AP   | 70 | 5. Alcohol Dependence                         | 142,976   | 125,106 | 17,869  | 0      | 0      | 69,954  | 38,657  | 16,496  | 0      | 0      | 9,904   | 5,551    | 2,415   |
| AP   | 71 | 6. Alzheimer's and other dementia             | 149,503   | 74,141  | 75,362  | 4,668  | 3,455  | 3,727   | 22,906  | 39,385  | 6,724  | 2,232  | 2,502   | 20,355   | 43,549  |
| AP   | 72 | 7. Parkinson's Disease                        | 13,272    | 7,428   | 5,844   | 11     | 21     | 80      | 2,743   | 4,573   | 25     | 0      | 64      | 2,379    | 3,376   |
| AP   | 73 | 8. Drug Dependence                            | 6,737     | 4,993   | 1,745   | 0      | 211    | 4,169   | 520     | 93      | 0      | 73     | 1,469   | 176      | 27      |
| AP   | 74 | F. Sense Organ                                | 160,080   | 81,232  | 78,848  | 843    | 0      | 8,460   | 40,946  | 30,983  | 823    | 0      | 6,660   | · 36,969 | 34,396  |
| AP   | 75 | 1. Glaucoma-related<br>Blindness              | 32,916    | 18,860  | 14,056  | 0      | 0      | 1,513   | 14,204  | 3,143   | 0      | 0      | 0       | 10,405   | 3,651   |
| AP   | 78 | 2. Cataract-related<br>Blindness              | 127,164   | 62,372  | 64,792  | 843    | 0      | 6,947   | 26,742  | 27,840  | 823    | 0      | 6,660   | 26,564   | 30,745  |
| AP   | 77 | G. Cardiovascular<br>Diseases                 | 1,855,050 | 959,952 | 895,098 | 19,820 | 13,196 | 131,374 | 305,706 | 489,857 | 23,341 | 21,553 | 120,433 | 199,344  | 530,427 |
| AP   | 78 | 1. Rheumatic Heart<br>Disease                 | 169,503   | 58,929  | 110,573 | 981    | 6,274  | 20,598  | 15,729  | 15,348  | 1,481  | 7,332  | 27,801  | 35,286   | 38,673  |
| AP   | 79 | 2. Ischemic Heart Disease                     | 796,479   | 487,627 | 308,853 | 250    | 121    | 64,251  | 171,388 | 251,617 | 157    | 134    | 16,473  | 64,919   | 227,169 |
| AP   | 80 | 3. Cerebrovascular<br>Disease                 | 622,440   | 282,178 | 340,262 | 4,331  | 2,850  | 40,568  | 65,954  | 168,475 | 4,331  | 5,138  | 45,426  | 69,837   | 215,530 |
| AP   | 81 | 4. PEMC                                       | 266,628   | 131,218 | 135,410 | 14,259 | 3,952  | 5,957   | 52,635  | 54,416  | 17,372 | 8,949  | 30,734  | 29,302   | 49,053  |
| AP   | 82 | H. Chronic Respiratory<br>Diseases            | . 291,341 | 160,364 | 130,976 | 13,625 | 24,564 | 34,615  | 31,438  | 56,121  | 12,240 | 18,729 | 37,126  | 31,046   | 31,836  |
| AP   | 83 | 1. COPD                                       | 155,604   | 93,051  | 62,553  | 8,157  | 2,192  | 6,140   | 23,655  | 52,907  | 7,135  | 1,596  | 4,673   | 21,141   | 28,008  |
| AP   | 84 | 2. Asthma                                     | 135,737   | 67,314  | 68,423  | 5,468  | 22,372 | 28,476  | 7,784   | 3,215   | 5,105  | 17,132 | 32,453  | 9,905    | 3,828   |
| AP   | 85 | I. Diseases of the Digestive<br>System        | 475,609   | 333,473 | 142,136 | 12,136 | 4,544  | 158,975 | 118,414 | 39,404  | 5,751  | 3,757  | 66,677  | 41,147   | 24,804  |
| AP   | 86 | 1. Peptic Ulcer Disease                       | 94,457    | 62,512  | 31,944  | 339    | 826    | 33,503  | 20,107  | 7,737   | 458    | 666    | 16,919  | 9,538    | 4,364   |
| AP   | 87 | 2. Cirrhosis of the Liver                     | 263,570   | 189,000 | 74,570  | 2,432  | 1,436  | 82,954  | 76,062  | 26,117  | 2,983  | 2,652  | 31,755  | 26,505   | 10,676  |
| AP   | 88 | J. Diseases of the<br>Genito-Urinary System   | 202,769   | 121,319 | 81,450  | 4,411  | 21,411 | 23,143  | 46,982  | 25,372  | 2,702  | 21,508 | 27,608  | 15,697   | 13,935  |
| AP   | 89 | 1. Nephritls/Nephrosis                        | 169,131   | 87,681  | 81,450  | 4,411  | 21,402 | 23,136  | 21,420  | 17,312  | 2,702  | 21,508 | 27,608  | 15,697   | 13,935  |
| AP   | 90 | 2. Benign Prostatic<br>Hypertrophy            | 33,638    | 33,638  | 0       | 0      | 8      | 7       | 25,562  | 8,060   | 0      | .0     | 0       | 0        | 0       |
| AP   | 91 | K. Diseases of the<br>Musculo-Skeletal System | 54,242    | 18,296  | 35,946  | 0      | 0      | 11,565  | 5,304   | 1,426   | .0     | 0      | 20,772  | 12,490   | 2,684   |

## Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| AP | 92  | 1. Rheumatoid Arthritis                                  | 18,074    | 8,411     | 9,663     | 0       | 0       | 7,023   | 854     | 533     | 0       | 0       | 6,829   | 2,287  | 547     |
|----|-----|----------------------------------------------------------|-----------|-----------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|
| AP | 83  | 2. Osteoarthritis                                        | 36,168    | 9,885     | 26,283    | 0       | 0       | 4,542   | 4,450   | 893     | 0       | 0       | 13,942  | 10,203 | 2,137   |
| AP | 94  | L. Congenital Abnormalities                              | 461,397   | 243,084   | 218,313   | 225,752 | 5,947   | 11,119  | 229     | 37      | 198,390 | 5,249   | 13,476  | 1,131  | 68      |
| AP | 95  | M. Oral Health                                           | 145,760   | 73,128    | 72,632    | 1,294   | 2,601   | 42,741  | 16,139  | 10,353  | 1,264   | 2,489   | 40,936  | 16,311 | 11,632  |
| AP | 96  | 1. Dental Caries                                         | 25,356    | 12,807    | 12,549    | 1,294   | 2,601   | 5,500   | 2,170   | 1,243   | 1,264   | 2,489   | 5,267   | 2,151  | 1,378   |
| AP | 97  | 2. Periodontal Disease                                   | 90,382    | 45,889    | 44,493    | 0       | 0       | 37,241  | 6,491   | 2,157   | 0       | 0       | 35,668  | 6,434  | . 2,391 |
| AP | 98  | 3. Edentulism                                            | 30,022    | 14,432    | 15,590    | 0       | 0       | . 0     | 7,479   | 6,953   | 0       | 0       | 0       | 7,727  | 7,863   |
| AP | 99  | III. Injuries                                            | 2,840,781 | 1,457,715 | 1,383,066 | 214,204 | 240,588 | 736,223 | 151,421 | 115,278 | 367.132 | 170,745 | 584,575 | 89,098 | 171,516 |
| AP | 100 | A. Unintentional                                         | 2,343,779 | 1,181,261 | 1,162,517 | 210,652 | 221,230 | 526,176 | 115,479 | 107,724 | 363,910 | 163,174 | 407,334 | 60,741 | 167,358 |
| AP | 101 | 1. Motor Vehicle<br>Accidents                            | 279,704   | 210,234   | 69,470    | 18,012  | 40,299  | 128,455 | 18,388  | 5,081   | 9,288   | 19,896  | 23,817  | 6,783  | 9,686   |
| AP | 102 | 2. Poisonings                                            | 34,361    | 14,178    | 20,183    | 2,989   | 1,971   | 7,699   | 1,262   | 256     | 2,228   | 1,319   | 14,252  | 1,873  | 511     |
| AP | 103 | 3. Falls                                                 | 899,015   | 371,961   | 527,054   | 70,974  | 68,502  | 107,781 | 41,803  | 82,901  | 282,524 | 61,831  | 34,593  | 15,001 | 133,104 |
| AP | 104 | 4. Fires                                                 | 394,584   | 124,944   | 269,640   | 36,833  | 13,412  | 64,417  | 7,870   | 2,411   | 7,673   | 28,152  | 213,779 | 14,061 | 5,976   |
| AP | 105 | 5. Drowning                                              | 200,649   | 129,193   | 71,456    | 29,070  | 43,586  | 48,175  | 6,018   | 2,345   | 8,801   | 25,960  | 28,106  | 4,035  | 4,553   |
| AP | 106 | 6. Venamous animals and<br>plants as cause of poisoining | 120,249   | 79,214    | 41,036    | 3,334   | 27,345  | 39,658  | 8,348   | 529     | 0       | 11,642  | 21,902  | 5,644  | 1,848   |
| AP | 107 | 7. Foreign body and accidental aspiration                | 35,394    | 21,341    | 14,053    | 17,780  | 3,560   | 0       | 0       | 0       | 14,053  | 0       | 0       | 0      | 0       |
| AP | 108 | 8. Electric Shock                                        | 65,439    | 65,439    | 0         | Ó       | 0       | 49,436  | 13,435  | 2,568   | 0       | 0       | 0       | 0      | 0       |
| AP | 109 | B. Intentional                                           | 497,003   | 276,454   | 220,549   | 3,552   | 19,358  | 210,047 | 35,942  | 7,554   | 3,223   | 7,571   | 177,241 | 28,357 | 4,158   |
| AP | 110 | 1. Self-inflicted                                        | 371,196   | 199,855   | 171,341   | 101     | 14,064  | 155,610 | 24,471  | 5,609   | 34      | 6,925   | 148,740 | 12,715 | 2,926   |
| AP | 111 | 2. Homicide and Violence                                 | 113,630   | 68,274    | 45,356    | 2,596   | 4,608   | 48,170  | 10,980  | 1,920   | 2,307   | 178     | 26,245  | 15,424 | 1,202   |
| AP | 112 | 3. Legal intervention                                    | 12,177    | 8,325     | 3,852     | 855     | 687     | 6,266   | 492     | 24      | 881     | 468     | 2,256   | 218    | 29      |
| REGIO<br>N | N    | DISEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALL        | ALLM      | ALLF      | M0        | M5      | M15       | M45       | M60     | F0                               | F5                    | F15       | F45     | F60     |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|---------|-----------|-----------|---------|----------------------------------|-----------------------|-----------|---------|---------|
| Rural      | 0    | Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14,037,909 | 7,184,267 | 6,853,642 | 2,688,456 | 612,608 | 1,911,313 | 1,008,885 | 963,005 | 2,720,956                        | 573,104               | 1,932,551 | 737,666 | 889,365 |
| Rural      |      | I. Communicable, Maternal &<br>Perinatal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,781,109  | 3.921,409 | 3,859,700 | 2,320,412 | 324,217 | 769,944   | 301,541   | 205,295 | 2,191 767                        | 340,807               | 952,455   | 229,014 | 145,657 |
| Rural      | 2    | A. Infectious & Parasitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,805,990  | 2,137,602 | 1,668,388 | 881,835   | 222,379 | 646,586   | 257,194   | 129,608 | 806,747                          | 210,391               | 419,525   | 155,826 | 75,900  |
| Rural      | 3    | 1. Tuberculosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,137,636  | 743,935   | 393,701   | 10,369    | 39,279  | 397,492   | 205,334   | 91,461  | 7,023                            | 33,328                | 203,783   | 112,278 | 37,288  |
| Rural      | 4    | 2. STD's Excluding HIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70,950     | 24,170    | 46,780    | 882       | 198     | 22,768    | 296       | 26      | 781                              | 402                   | 45,090    | 460     | 47      |
| Rural      | 5    | a. Syphilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46,614     | 21,881    | 24,732    | 834       | 170     | 20,610    | 247       | 20      | 749                              | 221                   | 23,449    | 287     | 26      |
| Rural      | 6    | b. Chlamydia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18,654     | 1,984     | 16,670    | 3         | 23      | 1,914     | 38        | 6       | 5                                | 146                   | 16,331    | 168     | 20      |
| Rural      | 7    | c. Gonorrhea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,682      | 305       | 5,377     | 45        | 5       | 244       | 11        | . 1     | 28                               | 35                    | 5,310     | 4       | 1       |
| Rural      | 8    | 3. HIV -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12,020     | 7,674     | 4,345     | 201       | 35      | 7,080     | 311       | 48      | 214                              | 47                    | 4,050     | 26      |         |
| Rural      | 9    | 4. Diarrhoeal Diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,024,113  | 531,358   | 492,755   | 413,358   | 32,015  | 55,835    | 12.396    | 17,753  | 380,519                          | 34,424                | 51,159    | 11,158  | 15,495  |
| Rural      | 10   | 5. Childhood Cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 739,942    | 379,914   | 360,027   | 303,700   | 35,343  | 35,394    | 4,021     | 1,456   | 282,318                          | 40,455                | 32,165    | 3,764   | 1,327   |
| Rural      | 11   | a. Pertussis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104,456    | 54,109    | 50,347    | 49,646    | 4,453   | 0         | 0         | 0       | 45,839                           | 4,508                 | 0         | 0       | . 0     |
| Rural      | 12   | b. Polio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75,725     | 40,034    | 35,691    | . 39,113  | 796     | 125       | 0         | 0       | 34,869                           | 707                   | 115       | 0       | 0       |
| Rural      | 13   | c. Diptheria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,208      | 3,667     | 3,542     | 2,850     | 702     | 114       | 0         | 0       | 2,674                            | 724                   | 144       | 0       | 0       |
| Rural      | 14   | d. Measles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 343,644    | 168,832   | 174,813   | 148,920   | 19,911  | 0         | 0         | 0       | 150,770                          | 24,043                | 0         | 0       | 0       |
| Rural      | 15   | e. Tetanus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 208,908    | 113,273   | 95,636    | 63,171    | 9,471   | 35,154    | 4,021     | 1,456   | 48,166                           | 10,473                | 31,906    | 3,764   | 1,327   |
| Rural      | . 16 | 6. Meningitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181,016    | 106,627   | 74,389    | 48,677    | 25,057  | 28,092    | 3,197     | 1,603   | 41,213                           | 13,224                | 17,866    | 1,602   | 484     |
| Rural      | 17   | 7. Hepatitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 137,261  | 79,399    | 57,862    | 47,113    | 5,583   | 18,983    | 5,639     | 2,081   | 30,843                           | 3,574                 | 17,748    | 3,794   | 1,903   |
| Rural      | 18   | 8. Malaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46,368     | 26,360    | 20,009    | 5,046     | 4,092   | 14,997    | 1,755     | 471     | 3,723                            | 3,643                 | 10,961    | 1,336   | 345     |
| Rural      | 19   | 9. Tropical Cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27,726     | 17,292    | 10,434    | 0         | 0       | 6,745     |           | 875     |                                  | 0                     | 0         | 8,847   | 1,587   |
| Rural      | 20   | a. Lymphatic Filariasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27,726     | 17,292    | 10,434    | 0         | 0       | 6,745     | 9,672     | 875     |                                  | 0                     |           | 8,847   | 1,587   |
| Rural      | 21   | 10. Leprosy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28,820     | 14,086    | 14,734    | 1,510     | 11,564  | 802       |           | 19      | 1,498                            | 12,327                | 787       | 100     | 21      |
| Rural      | 22   | 11. Trachoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18,375     | 6,513     | 11,862    | 0         | 0       | 2,777     |           | 1,607   | 0                                | 0                     | -,        | · 1,012 | 5,459   |
| Rural      | 23   | 12. Intestinal Helminths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116,567    | 58,465    | 58,102    | 240       | 47,033  | 9,713     | 995       | 485     |                                  | 46,036                |           | 864     | 501     |
| Rural      | 24   | a. Ascaris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63,716     | 32,223    | 31,493    | 240       | 31,983  | 0         | 0         | 0       | 238                              | 31,255                |           | 0       | 0       |
| Rural      | 25   | b. Trichuris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26,975     | 13,622    | 13,353    | 0         | 13,407  | 163       |           | 0       |                                  | 1 <mark>3,</mark> 189 |           | 49      | 0       |
| Rural      | 26   | c. Hookworm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25,876     | 12,620    |           |           | 1,643   | 9,550     |           | 485     | Contraction of the second second | 1,592                 |           | 815     |         |
| Rural      | 27   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42,310     | 27,132    |           |           | 3,267   | 4,406     |           | 326     |                                  | 1,826                 |           | 337     | 344     |
| Rural      | 28   | and the second se | 1,409,260  | 703,767   | 705,493   | 495,509   | 43,658  | 76,188    |           | 65,829  |                                  | 58,291                | 65,002    | 23,715  | 53,230  |
| Rural      | 29   | 1. Acute Respiratory<br>Infections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,363,428  | 680,843   | 682,584   | 472,586   | 43,658  | 76,188    | 22,582    | 65,829  | 482,346                          | 58,291                | 65,002    | 23,715  | 53,230  |

# Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

## Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| Rural | 30   | 2. Otitis Media                   | 45,833    | 22,923    | 22,909    | 22,923  | 0      | 0       | 0       | 0       | 22,909  | 0      | 0       | 0       | 0       |
|-------|------|-----------------------------------|-----------|-----------|-----------|---------|--------|---------|---------|---------|---------|--------|---------|---------|---------|
| Rural | 31   | C. Maternal Conditions            | 411,882   |           | 411,882   | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 385,018 | 22,486  | 4,378   |
| Rural | 32   | 1. Hemmorhage                     | 20,015    | 0         | 20,015    | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 18,944  | 1.072   |         |
| Rural | 33   | 2. Sepsis                         | 130,816   | 0         | 130,816   | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 121,013 | 9,803   | 0       |
| Rural | 34   | 3. Eclampsia                      | 3,342     | 0         | 3,342     | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 3,288   | 54      | 0       |
| Rural | 35   | 4. Hypertension                   | 5,767     | 0         | 5,767     | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 5,767   | 0       | 0       |
| Rural | 36   | 5. Obstructed Labor               | 96,138    | 0         | 96,138    | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 88,447  | 7,691   | 0       |
| Rural | 37   | 6. Abortion                       | 31,649    | 0         | 31,649    | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 30,758  | 891     | 0       |
| Rural | 38   | D. Perinatal Conditions           | 1,387,682 | 725,972   | 661,710   | 725,972 | 0      | 0       | 0       | 0       | 661,710 | 0      | 0       | 0       | 0       |
| Rural | 39   | E. Nutritional                    | 766,295   | 354,068   | 412,227   | 217,094 | 58,180 | 47,171  | 21,765  | 9,858   | 218,056 | 72,125 | 82,910  | 26,987  | 12,149  |
| Rural | 40   | 1. Protein-Energy<br>Malnutrition | 312,139   | 154,391   | 157,747   | 147,584 | 1,139  | 3,754   | 536     | 1,379   | 151,507 | 2.516  | 2.115   | 356     | 1,253   |
| Rural | . 41 | 2. Iodine Deficiency              | 67,524    | 33,926    | 33,599    | 29,582  | 1,236  | 2,176   | 616     | 316     | 29,362  | 1,532  | 2,280   | 250     | 174     |
| Rural | 42   | 3. Vitamin A                      | 26,810    | 13,808    | 13,001    | 13,808  | 0      | 0       | 0       | 0       | 13,001  | 0      | 0       | 0       | 0       |
| Rural | 43   | 4: Anemias                        | 359,822   | 151,943   | 207,880   | 26,120  | 55,804 | 41,241  | 20,614  | 8,163   | 24,185  | 68,077 | 78,514  | 26,382  | 10,721  |
| Rural | 44   | II. Noncommunicable               | 3,960,604 | 2,104,230 | 1,856,374 | 204,066 | 79,738 | 581,702 | 585,469 | 653,255 | 191,764 | 78,735 | 566,635 | 435,762 | 583,478 |
| Rural | 45   | A. Malignant Neoplasms            | 457,662   | 222,954   | 234,708   | 4,361   | 4,060  | 68,544  | 89,706  | 56,283  | 1,526   | 1,946  | 87,988  | 109,161 | 34,087  |
| Rural | 46   | 1. Mouth and Oropharynx           | 36,707    | 24,058    | 12,648    | 0       | 0      | 6,804   | 10,505  | 6,749   | 0       | 0      | 4,620   | 5,622   | 2,406   |
| Rural | 47   | 2. Esophagus                      | 52,163    | 30,237    | 21,926    | 0       | 0      | 9,130   | 13,801  | 7,306   | 0       | 0      | 8,359   | 9,611   | 3,956   |
| Rural | 48   | 3. Stomach                        | 45,432    | 30,146    | 15,286    | 1       | 4      | 9,815   | 12,359  | 7,966   | 0       | 0      | 5,887   | 7,250   | 2,149   |
| Rural | 49   | 4. Colon/Rectum                   | 20,205    | 11,365    | 8,840     | 0       | 23     | 2,218   | 5,715   | 3,409   | 29      | 55     | 1,454   | 4,840   | 2,462   |
| Rural | 50   | 5. Liver                          | 16,871    | 11,721    | 5,150     | 60      | 113    | 2,819   | 6,519   | 2,210   | 28      | 78     | 1,299   | 2,576   | 1,170   |
| Rural | 51   | 6. Pancreas                       | 9,918     | 6,160     | 3,758     | 0       | 0      | 1,291   | 2,991   | 1,878   | 0       | 26     | 1,181   | · 1,888 | 662     |
| Rural | 52   | 7. Trachea/Bronchus/Lung          | 45,384    | 38,470    | 6,914     | 30      | 24     | 7,352   | 21,000  | 10,065  | 28      | 27     | 758     | 4,552   | 1,549   |
| Rural | 53   | 8. Melanoma and Other<br>Skin     | 1,263     | 696       | 567       | 7       | 19     | 139     | 301     | 229     | 33      | 5      | 171     | 251     | 107     |
| Rural | 54   | 9. Breast                         | 44,520    | 0         | 44,520    | 0       | 0      | 0       | 0       | 0       | 0       | 1      | 18,394  | 22,401  | 3,723   |
| Rural | 55   | 10. Cervix                        | 71,762    | 0         | 71,762    | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 27,623  | 36,793  | 7,347   |
| Rural | 56   | 11. Corpus Uteri                  | 4,519     | 0         | 4,519     | 0       | 0      | 0       | 0       | 0       | 0       | 0      | 2,064   | 1,239   | 1,216   |
| Rural | 57   | 12. Ovary                         | 9,995     | 0         | 9,995     | 0       | 0      | 0       | 0       | 0       | 29      | . 56   | 4,281   | 4,533   | 1,097   |
| Rural | 58   | 13. Prostate                      | 9,555     | 9,555     | 0         | 0       | 0      | 140     | 2,007   | 7,407   | 0       | 0      | 0       | 0       | 0       |
| Rural | 59   | 14. Bladder                       | 8,333     | 5,197     | 3,137     | 0       | 23     | 958     | 1,966   | 2,249   | 29      | 54     | 246     | 836     | 1,972   |
| Rural | 60   | 15. Lymphoma                      | 61,559    | 42,487    | 19,072    | 4,262   | 3,853  | 25,021  | 5,869   | 3,483   | 1,350   | 1,644  | 9,775   | 3,595   | 2,708   |

## Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| Rural | 61 | 16. Larynx                                  | 19,476    | 12,862  | 6,615   | 0      | . 0    | 2,857   | 6,673   | 3,332   | 0      | 0      | 1,876   | 3,174   | 1,565   |
|-------|----|---------------------------------------------|-----------|---------|---------|--------|--------|---------|---------|---------|--------|--------|---------|---------|---------|
| Rural | 62 | B. Other Neoplasm                           | 8,690     | 5,623   | 3,067   | 462    | 443    | 3,985   | 435     | 298     | 172    | 80     | 2,227   | 409     | 178     |
| Rural | 63 | C. Diabetes Melltus                         | 87,116    | 48,202  | 38,913  | 0      | 0      | 12,404  | 13,557  | 22,241  | 0      | 0      | 12,195  | 8,097   | 18,622  |
| Rural | 64 | D. Other Endocrine                          | 0         | 0       | 0       | 0      | 0      | 0       | 0       | 0       | 0      | 0      | 0       | 0       | 0       |
| Rural | 65 | E. Neuro-Psychiatric                        | 670,817   | 349,027 | 321,790 | 9,698  | 28,588 | 196,423 | 61,656  | 52,662  | 9.335  | 19,775 | 207,824 | 40,216  | 44,640  |
| Rural | 66 | 1. MAD                                      | 185,190   | 61,765  | 123,425 | 0      | 0      | 52,387  | 7,630   | 1,748   | 0      | 0      | 104,449 | 15,338  | 3,638   |
| Rural | 67 | 2. BAD                                      | 12,394    | 6,248   | 6.146   | 0      | 0      | 5,387   | 697     | 163     | 0      | 0      | 5,265   | 704     | 178     |
| Rural | 68 | 3. Psychoses                                | 128,493   | 59,190  | 69,303  | 12     | 71     | 54,688  | 2,735   | 1,685   | 16     | 114    | 67,059  | 584     | 1,530   |
| Rural | 69 | 4. Epilepsy                                 | 112,245   | 65,678  | 46,567  | 7,128  | 26,271 | 27,790  | 2,735   | 1,755   | 4,950  | 17,772 | 20,765  | 2,037   | 1,042   |
| Rural | 70 | 5. Alcohol Dependence                       | 104,518   | 91,405  | 13,114  | 0      | 0      | 51,024  | 28,292  | 12,088  | 0      | 0      | 7,280   | 4,070   | 1,764   |
| Rural | 71 | 6. Alzheimer's and other dementia           | 113,689   | 55,992  | 57.697  | 2,552  | 2,105  | 2,642   | 17,188  | 31,505  | 4.353  | 1,835  | 2,049   | 15,556  | 33,904  |
| Rural | 72 | 7. Parkinson's Disease                      | 10,241    | 5,787   | 4,454   | 6      | 13     | 57      | 2,057   | 3,655   | 16     | 0      | 52      | 1,819   | 2,567   |
| Rural | 73 | 8. Drug Dependence                          | 4,046     | 2,962   | 1,084   | 0      | 130    | 2,448   | 321     | 62      | 0      | 53     | 906     | 108     | 17      |
| Rural | 74 | F. Sense Organ                              | 128,167   | 64,905  | 63,262  | 609    | 0      | 6,415   | 32,040  | 25,841  | 602    | 0      | 5,133   | 29,333  | 28,194  |
| Rural | 75 | 1. Glaucoma-related<br>Blindness            | 25,087    | 14,296  | 10,791  | . 0    | 0      | 1,083   | 10,700  | 2,514   | 0      | 0      | 0       | 7,931   | 2,860   |
| Rural | 76 | 2. Cataract-related<br>Blindness            | 103,080   | 50,608  | 52,472  | 609    | 0      | 5,332   | 21,340  | 23,327  | 602    | 0      | 5,133   | 21,402  | 25,334  |
| Rural | 77 | G. Cardiovascular Diseases                  | 1,411,033 | 730,950 | 680,084 | 11,022 | 8,825  | 93,323  | 226,382 | 391,398 | 15,215 | 17,017 | 96,366  | 157,540 | 393,945 |
| Rural | 78 | 1. Rheumatic Heart<br>Disease               | 128,610   | 43,570  | 85.040  | 580    | 4,479  | 14,645  | 11,607  | 12,259  | 980    | 5,541  | 22,082  | 28,091  | 28,346  |
| Rural | 79 | 2. Ischemic Heart Disease                   | 607,506   | 373,934 | 233,571 | 143    | 78     | 45,634  | 127,029 | 201,050 | 104    | 106    | 13,108  | 51,141  | 169,112 |
| Rural | 80 | 3. Cerebrovascular Disease                  | 475,112   | 216,603 | 258,508 | 2,469  | 1,835  | 28,811  | 48,873  | 134,615 | 2,865  | 4,073  | 36,193  | 55,041  | 160,337 |
| Rural | 81 | 4. PEMC                                     | 199,806   | 96,842  | 102,964 | 7,830  | 2,433  | 4,233   | 38,872  | 43,473  | 11,266 | 7,297  | 24,984  | 23,266  | 36,151  |
| Rural | 82 | H. Chronic Respiratory<br>Diseases          | 216,529   | 117,314 | 99,214  | 7,856  | 16,608 | 24,666  | 23,339  | 44,845  | 8,092  | 14,361 | 28,611  | 24,386  | 23,765  |
| Rural | 83 | 1. COPD                                     | 117,293   | 70,018  | 47,276  | 4,497  | 1,363  | 4,355   | 17,527  | 42,276  | 4,639  | 1,295  | 3,784   | 16,669  | 20,889  |
| Rural | 84 | 2. Asthma                                   | 99,235    | 47,296  | 51,939  | 3,359  | 15,246 | 20,310  | 5,812   | 2,569   | 3,453  | 13,066 | 24,827  | 7,717   | 2,876   |
| Rural | 85 | I. Diseases of the Digestive<br>System      | 336,694   | 232,575 | 104,119 | 1,542  | 1,480  | 112,745 | 86,849  | 29,960  | 2,379  | 2,710  | 49,271  | 31,459  | 18,301  |
| Rural | 86 | 1. Peptic Ulcer Disease                     | 70,420    | 45,726  | 24,694  | 190    | 572    | 23,848  | 14,935  | 6,182   | 297    | 522    | 13,168  | 7,482   | 3,224   |
| Rural | 87 | 2. Cirrhosis of the Liver                   | 196,770   | 138,388 | 58,382  | 1,352  | 908    | 58,890  | 56,368  | 20,869  | 1,948  | 2,127  | 25,450  | 20,889  | 7,968   |
| Rural | 88 | J. Diseases of the<br>Genito-Urinary System | 151,577   | 88,733  | 62,844  | 2,593  | 14,224 | 16,459  | 35,180  | 20,277  | 1,812  | 16,712 | 21,563  | 12,278  | 10,478  |

38

10421-12

10.5 PERSON

Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| Rural | 89  | 1. Nephritis/Nephrosis                                | 125,871   | 63,027    | 62,844    | 2,593   | 14,219  | 16,454  | 15,925  | 13,836  | 1,812   | 16,712  | 21,563  | 12,278 | 10,478  |
|-------|-----|-------------------------------------------------------|-----------|-----------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|
| Rural | 90  | 2. Benign Prostatic<br>Hypertrophy                    | 25,706    | 25,706    | 0         | 0       | 5       | 5       | 19,255  | 6,441   | 0       | 0       | 0       | 0      | 0       |
| Rural | 91  | K. Diseases of the<br>Musculo-Skeletal System         | 40.025    | 13,412    | 26,613    | 0       | 0       | 8,276   | 3,995   | 1,141   | 0       | 0       | 14,970  | 9,545  | 2,098   |
| Rural | 92  | 1. Rheumatoid Arthritis                               | 13,224    | 6,094     | 7,130     | 0       | 0       | 5,025   | 643     | 426     | 0       | 0       | 4,940   | 1,767  | 423     |
| Rural | 93  | 2. Osteoarthritis                                     | 26,801    | 7,318     | 19,483    | 0       | 0       | 3,251   | 3,352   | 714     | 0       | 0       | 10,030  | 7,777  | 1,675   |
| Rural | 94  | L. Congenital Abnormalities                           | 344,674   | 176,668   | 168,006   | 164,980 | 3,618   | 7,872   | 173     | 26      | 151,698 | 4,313   | 11,038  | 906    | 51      |
| Rural | 95  | M. Oral Health                                        | 107.620   | 53,868    | 53,753    | 943     | 1,891   | 30,591  | 12,159  | 8,283   | 932     | 1.820   | 29,450  | 12.433 | 9,117   |
| Rural | 96  | 1. Dental Caries                                      | 18.661    | 9,400     | 9,261     | 943     | 1,891   | 3,936   | 1,635   | 994     | 932     | 1,820   | 3,789   | 1.640  | 1,080   |
| Rural | 97  | 2. Periodontal Disease                                | 65,709    | 33,270    | 32,438    | 0       | 0       | 26,655  | 4,890   | 1,726   | 0       | 0       | 25,660  | 4.904  | 1,874   |
| Rural | 98  | 3. Edentulism                                         | 23,250    | 11,197    | 12,053    | 0       | 0       | 0       | 5,634   | 5,563   | 0       | 0       | 0       | 5.890  | 6,163   |
| Rural | 99  | III. Injuries                                         | 2,296,196 | 1,158,628 | 1,137,568 | 163,978 | 208,653 | 559,666 | 121,874 | 104,455 | 337,424 | 153,563 | 413,461 | /2.891 | 160,230 |
| Rural | 100 | A. Unintentional                                      | 1,827,902 | 900,492   | 927,410   | 163,561 | 190,128 | 361,711 | 87,630  | 97,462  | 336,987 | 146,483 | 241,475 | 45,670 | 156,796 |
| Rural | 101 | 1. Motor Vehicle Accidents                            | 236,574   | 176,699   | 59,875    | 13,728  | 37,523  | 107,191 | 14,419  | 3,838   | 8,190   | 18,958  | 18,859  | 5,187  | 8,680   |
| Rural | 102 | 2. Poisonings                                         | 24,795    | 7,556     | 17,239    | 1,578   | 1,082   | 4,088   | 675     | 132     | 1,577   | 970     | 12,568  | 1,658  | 466     |
| Rural | 103 | 3. Falls                                              | 816,344   | 310,866   | 505,478   | 58,432  | 59,818  | 77,678  | 35,516  | 79,421  | 275,927 | 58,594  | 28,147  | 12,768 | 130,041 |
| Rural | 104 | 4. Fires                                              | 210,280   | 71,723    | 138,558   | 26,482  | 8,747   | 30,787  | 4,083   | 1,623   | 0       | 22,091  | 106,083 | 7,976  | 2,408   |
| Rural | 105 | 5. Drowning                                           | 189,028   | 120,294   | 68,734    | 27,554  | 42,116  | 43,126  | 5,319   | 2,179   | 8,251   | 25,658  | 26,555  | 3,878  | 4,392   |
| Rural | 106 | 6. Venamous animals and plants as cause of poisoining | 120,249   | 79,214    | 41,036    | 3,334   | 27,345  | 39,658  | 8,348   | 529     | 0       | 11,642  | 21,902  | 5.644  | 1,848   |
| Rural | 107 | 7. Foreign body and accidental aspiration             | 35,394    | 21,341    | 14,053    | 17,780  | 3,560   | 0       | 0       | 0       | 14,053  | 0       | 0       | 0      | 0       |
| Rural | 108 | 8. Electric Shock                                     | 65,439    | 65,439    | 0         | 0       | 0       | 49,436  | 13,435  | 2,568   | 0       | 0       | 0       | 0      | 0       |
| Rural | 109 | B. Intentional                                        | 468,294   | 258,136   | 210,158   | 418     | 18,525  | 197,955 | 34,244  | 6,994   | 437     | 7,080   | 171,987 | 27,221 | 3,433   |
| Rural | 110 | 1. Self-inflicted                                     | 364,121   | 195,226   | 168,895   | 0       | 14,026  | 151,690 | 24,021  | 5,489   | 0       | 6,850   | 146,703 | 12,491 | 2,853   |
| Rural | 111 | 2. Homicide and Violence                              | 98,439    | 59,005    | 39,433    | 0       | 4,165   | 43,460  | 9,888   | 1,493   | 0       | 0       | 24,265  | 14,600 | 567     |
| Rural | 112 | 3. Legal intervention                                 | 5,734     | 3,905     | 1,829     | 418     | 334     | 2,806   | 335     | 12      | 437     | 230     | 1,019   | 130    | 13      |

| REGI<br>ON | N   | DISEASE                                  | ALL       | ALLM      | ALLF      | MO       | M5      | M15     | M45            | M60              | F0                 | F5               | F15              | F45     | F60              |
|------------|-----|------------------------------------------|-----------|-----------|-----------|----------|---------|---------|----------------|------------------|--------------------|------------------|------------------|---------|------------------|
| Urban      |     | Sum                                      | 3,619,609 | 1,975,375 | 1,644,235 | 706.915  | 141,941 | 600,395 | 309,942        | 216,182          | 576,634            | 91,994           | 543,875          | 177,674 | 254,058          |
| Urban      | 1   | I. Communicable, Maternal &<br>Perinatal | 1,746,993 | 930,639   | 816,354   | 559,747  | 70,351  | 184,349 | 74,742         | 41,451           | 478,114            | 51.066           | 194,237          | 44,728  | 48,209           |
| Urban      | 2   | A Infectious & Parasitic                 | 707,598   | 433,489   | 274,108   | 143,847  | 49,325  | 151,486 | 63,633         | 25,197           | 113,206            | 32,732           | 75,378           | 27,259  | 25 522           |
| Urban      | 3   |                                          | 232,847   | 166,595   | 66,252    | 1,787    | 7,471   | 91,602  |                | 18,083           | 1,350              | 4,640            | 29,784           |         | 25,533           |
| Urban      | 4   | 2. STD's Excluding HIV                   | 20,205    | 7,606     | 12,599    | 262      | 86      | 7,142   |                | 18               | 220                | 98               | 11,909           | 16,227  | 14,251           |
| Urban      | 5   | a. Syphilis                              | 13,097    | 6,677     | 6,420     | 223      | 74      | 6,285   | 79             | 16               | 195                |                  | 5,874            | 334     | 39               |
| Urban      | 6   | b. Chlamydia                             | 5,572     | 785       | 4,787     | 3        | 9       | 760     | 12             | 10               | 135                | 46               |                  | 279     | 33               |
| Urban      | 7   | c. Gonorrhea                             | 1,536     | 144       | 1,392     | 37       | 3       | 97      | 7              | 0                | 22                 | 13               | 4,680            | 53      | 6                |
| Urban      | 8   | 3. HIV                                   | 9,383     | 5,265     | 4,118     | 66       | 17      | 4,972   |                | 20               | 60                 |                  | 1,355            | 2       | 0                |
| Urban      | . 9 | 4. Diarrhoeal Diseases                   | 183,875   | 100,930   | 82,945    | 76,713   | 7,841   | 11,343  | 2,633          | 2,399            | 63,578             | 4,570            | 4,030            | 15      | 4                |
| Urban      | 10  | 5. Childhood Cluster                     | 78,865    | 44,181    | 34,684    | 30,789   | 5,131   | 7,125   | 923            | 2,333            | 25,233             |                  | 8,857            | 2,246   | 3,694            |
| Urban      | 11  | a. Pertussis                             | 13,931    | 7,605     | 6,326     | 6,339    | 1,266   | 0       | 0              | - 213            |                    | 2,991            | 5,279            | 830     | 351              |
| Urban      | 12  | b. Polio                                 | 21,096    | 11,568    | 9,528     | · 11,309 | 225     | 35      | 0              | 0                | 5,310              | 1,017            | 0                | 0       | 0                |
| Urban      | 13  | c. Diptheria                             | 1,294     | 691       | 604       | 461      | 139     | 91      | 0              | 0                | 9,308              | 194              | 27               | 0       | 0                |
| Urban      | 14  | d. Measles                               | 14,386    | 8,045     | 6,341     | 6,968    | 1,077   |         | 0              | 0                | 419<br>5,782       | 111              | 74               | 0       | 0                |
| Urban      | 15  | e. Tetanus                               | 28,157    | 16,272    | 11,885    | 5,713    | 2,424   | 7,000   | 923            | 213              |                    | 559              | 0                | 0       | 0                |
| Urban      | 16  | 6. Meningitis                            | 26,956    | 17,436    | 9,519     | 7,692    | 4.801   | 4,220   | 542            | 182              | 4,414<br>5,942     | 1,110            | 5,179            | 830     | 351              |
| Urban      | 17  | 7. Hepatitis                             | 15,340    | 10,409    | 4,931     | 2,431    | 969     | 4,778   | 1,611          | 620              | 956                | 1,070            | 2,157            | 254     | 97               |
| Urban      | 18  | 8. Malaria                               | 3,285     | 1,984     | 1,301     | 182      | 422     | 1,180   | 164            | 36               |                    | 177              | 2,433            | 694     | 671              |
| Urban      | 19  | 9. Tropical Cluster                      | 12,040    | 7,883     | 4,156     | 0        | 0       | 3,483   | 4,117          | 284              | 155                | 218              | 764              | 124     | 41               |
| Urban      | 20  | a. Lymphatic Filariasis                  | 12,040    | 7,883     | 4,156     | 0        | 0       | 3,483   | 4,117          | 284              | 0                  | 0                | 0                | 3,587   | 569              |
| Urban      | 21  | 10. Leprosy                              | 10,689    | 5,283     | 5,406     | 561      | 4,336   | 319     | 63             | 5                | 0<br>534           |                  | 0                | 3,587   | 569              |
| Urban      | 22  | 11. Trachoma                             | 6,125     | 2,201     | 3,924     | 0        | 0       | 1,103   | 697            | 401              |                    | 4,528            | 307              | 31      | 6                |
| Urban      | 23  | 12. Intestinal Helminths                 | 33,997    | 17,598    | 16,399    | 67       | 14,438  | 2,778   | 259            |                  | 0                  | 0                | 2,103            | 316     | 1,506            |
| Urban      | 24  | a. Ascaris                               | 17,552    | 9,067     | 8,485     | 67       | 9,000   | 2,110   | 239            | 56               | 64                 | 13,535           | 2,495            | 246     | 59               |
| Urban      | 25  | b. Trichuris                             | 9,766     | 5,055     | 4,711     | 0        | 4,976   | 62      | 18             | 0                | 64                 | 8,421            | 0                | 0       | 0                |
| Urban      | 26  | c. Hookworm                              | 6,679     | 3,476     | 3,203     | 0        | 462     | 2,716   | 241            | 0                | 0                  | 4,670            | 24               | 17      | 0                |
| Urban      | 27  | 13. Japanese encephalitis                | 15,456    | 10,369    | 5,087     | 6,927    | 1,488   | 1,505   | 318            | 56               | 0                  | 444              | 2,471            | 229     | 59               |
| Urban      | 28  | B. Respiratory Infections                | 416,477   | 217,846   | 198,632   | 154,075  | 16,667  | 24,564  |                | 130              | 3,648              | 390              | 672              | 158     | 218              |
| Urban      | 29  | 1. Acute Respiratory<br>Infections       | 400,927   | 209,822   | 191,105   | 146,051  | 16,667  | 24,564  | 7,639<br>7,639 | 14,902<br>14,902 | 141,701<br>134,174 | 10,552<br>10,552 | 18,298<br>18,298 | 7,649   | 20,432<br>20,432 |

# Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| Urban | 30 | 2. Otitis Media            | 15,551    | 8,024   | 7,527   | 8,024   |        |         |         |               |         |        |         |         | I       |
|-------|----|----------------------------|-----------|---------|---------|---------|--------|---------|---------|---------------|---------|--------|---------|---------|---------|
| Urban | 31 | C. Maternal Conditions     | 86,281    | 0       | 86,281  | 0,024   | 0      |         |         | 0 0           | . 7,527 | 0      |         | 0       | 0       |
| Urban | 32 |                            | 7,230     | 0       | 7,230   |         |        |         | 1       |               | 0       |        | 79,604  | 6,677   | (0)     |
| Urban | 33 |                            | 38,572    | 0       | 38,572  | 0       | 0      |         |         |               | 0       | 0      | 6,868   | 362     |         |
| Urban | 34 |                            | 1,281     | 0       | 1.281   |         | 0      |         |         |               | 0       | 0      | 35,260  | 3,312   | 0       |
| Urban | 35 |                            | 541       | 0       | 541     | 0       | 0      |         |         |               | 0       | 0      | 1,263   | 18      | 0       |
| Urban | 36 |                            | 29,670    | · 0     | 29,670  | 0       | 0      |         |         |               | 0       | 0      | 541     | 0       | 0       |
| Urban | 37 |                            | 5,363     | 0       | 5,363   | 0       | 0      | 0       |         | 1             | 0       | 0      | 27,071  | 2,599   | 0       |
| Urban | 38 |                            | 390,339   | 211,289 | 179,049 | 0       | 0      | 0       |         |               | 0       | 0      | 5,062   | 301     | 0       |
| Urban | 39 | entrater e entattions      | 146,299   | 68,015  | 78.284  | 211,289 | 0      | 0       |         |               | 179,049 | 0      | 0       | 0       | 0       |
| Urban | 40 |                            | 62,122    | 33,966  |         | 50,535  | 4,360  | 8,299   |         |               | 44,158  | 7,782  | 20,957  | 3,143   | 2.244   |
|       |    | Malnutrition               | 02.122    | 33,900  | 28,156  | 31,205  | 661    | 984     | 722     | 394           | 26.023  | 166    | 741     | 321     | 906     |
| Urban | 41 | 2. lodine Deficiency       | 24,159    | 12,458  | 11.701  | 10,928  |        |         |         |               |         |        |         |         |         |
| Urban | 42 | 3. Vitamin A               | 10,850    | 5,516   | 5,335   | 5,516   | 466    | 785     |         |               | 10,365  | 441    | 750     | 79      | 65      |
| Urban | 43 | 4. Anemias                 | 49,168    | 16,075  | 33,093  | 2,887   | 0      | 0       |         |               | -5,335  | 0      | 0       | 0       | 0       |
| Urban | 44 | II. Noncommunicable        | 1,328,031 | 745,648 | 582,383 | 96,943  | 3,233  | 6,530   | 2,540   | 175.0 Table 1 | 2,435   | 7,175  | 19,466  | 2,743   | 1.274   |
| Urban | 45 |                            | 137,597   | 81,979  | 55,617  |         | 39,654 | 239,488 | 205,653 | 163,909       | 68,812  | 23,746 | 178,525 | 116,738 | 194,563 |
| Urban | 46 | 1. Mouth and Oropharynx    | 11,601    | 8,146   | 3,455   | 3,284   | 2,276  | 34,345  | 30,489  | 11,586        | 748     | 420    | 20,425  | 23,565  | 10.459  |
| Urban | 47 | 2. Esophagus               | 15,472    | 9,959   | 5,513   | 0       | .0     | 2,767   | 3,686   | 1,693         | 0       | 0      | 1,650   | 1,492   | 312     |
| Urban | 48 | 3. Stomach                 | 14,430    |         |         | 0       | 0      | 3,553   | 4,652   | 1,754         | 0       | 0      | 1,789   | 2,378   | 1.347   |
| Urban | 49 | 4. Colon/Rectum            |           | 10,434  | 3,996   | 0       | 2      | 4,052   | 4,375   | 2,004         | 0       | 0      | 1,349   | 1,887   | 760     |
| Urban | 50 | 5. Liver                   | 6,091     | 3,756   | 2,335   | 0       | 0      | 904     | 1,814   | 1,037         | 0       | · 16   | 356     | 1,285   | . 678   |
| Urban | 51 | 6. Pancreas                | 5,439     | 4,059   | 1,380   | 66      | 77     | 1,114   | 2,255   | 546           | 0       | 16     | 295     | 655     | 415     |
| Urban | 52 | 7. Trachea/Bronchus/Lung   | 3,103     | 2,099   | 1,004   | 0       | 0      | 559     | 1,067   | 473           | 0       | 0      | 272     | 488     | 244     |
| Urban | 53 | 8. Melanoma and Other Skin | 19,145    | 17,375  | 1,770   | 0       | 0      | 10,335  | 6,856   | 184           | 0       | 0      | 163     | 1,095   | 511     |
| Urban | 54 | 9. Breast                  | 401       | 239     | 162     | 6       | 12     | 57      | 106     | 58            | 18      | 1      | 319     | 65      | 39      |
| Urban | 55 | 10. Cervix                 | 12,288    | 0       | 12,288  | 0       | 0      | 0       | 0       | 0             | 0       | 0      | 5,519   | 4,809   | 1,959   |
| Urban | 56 |                            | 12,602    | 0       | 12,602  | 0       | 0      | 0       | 0       | 0             | 0       | 0      | 5,207   | 5,935   | 1,460   |
| Urban | 57 | 11. Corpus Uteri           | 1,026     | 0       | 1,026   | 0       | 0      | 0       | 0       | 0             | 0       | 0      | 330     | 300     | 395     |
|       |    | 12. Ovary                  | 2,354     | 0       | 2,354   | 0       | 0      | 0       | 0       | 0             | 43      | 17     | 9013    | 1,183   | 209     |
| Urban | 58 | 13. Prostate               | 2,348     | 2,348   | 0       | 0       | 0      | 49      | 707     | 1,591         | 0       | 0      | ro      | 0       | 0       |
| Urban | 59 | 14. Bladder                | 2,778     | 1,702   | 1,076   | 0       | 0      | 404     | 694     | 604           | 0       | 16     | 7.1     | 302     | 686     |
| Urban | 60 | 15. Lymphoma               | 22,304    | 17,474  | 4,830   | 3,211   | 2,184  | 9,378   | 1,897   | 805           | 686     | 353    | 2,04:2  | 861     | 889     |
| Urban | 61 | 16. Larynx                 | 6,218     | 4,389   | 1,829   | 0       | 0      | 1,172   | 2,380   | 837           | 0       | 0      | 441     | 830     | 558     |

# Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| Urban | 62 | B. Other Neoplasm                           | 2,453   | 1,735   | 718     | 270    | 196    | 1,069  | 123    | 77     | 87    | 16    | 426    | 113    | 76      |
|-------|----|---------------------------------------------|---------|---------|---------|--------|--------|--------|--------|--------|-------|-------|--------|--------|---------|
| Urban | 63 | C. Diabetes Melltus                         | 31,792  | 18,962  | 12,829  | 66     | 115    | 4,696  | 8,273  | 5,812  | 0     | 30    | 1,796  | 4,011  | 6,992   |
| Urban | 64 | D. Other Endocrine                          | 1,091   | 663     | 428     | 66     | 38     | 337    | 150    | 71     | 0     | 0     | 153    | 119    | 156     |
| Urban | 65 | E. Neuro-Psychiatric                        | 245,170 | 129,884 | 115,286 | 4,921  | 11,413 | 77,396 | 21,574 | 14,581 | 4,197 | 6,929 | 78,438 | 12,674 | 13,048  |
| Urban | 66 | 1. MAD                                      | 70,266  | 23,742  | 46,525  | 0      | 0      | 20,807 | 2,498  | 437    | 0     | 0     | 40,737 | 4,784  | 1,003   |
| Urban | 67 | 2. BAD                                      | 4,728   | 2,412   | 2,316   | 0      | 0      | 2,141  | 230    | 41     | 0     | 0     | 2,046  | 217    | 52      |
| Urban | 68 | 3. Psychoses                                | 49,899  | 23,214  | 26,685  | 10     | 45     | 21,761 | 973    | 424    | 9     | 25    | 25,945 | 149    | 558     |
| Urban | 69 | 4. Epilepsy                                 | 40,284  | 24,995  | 15,289  | 2,789  | 9,929  | 10,928 | 906    | 443    | 1,807 | 6,488 | 6.058  | 616    | 320     |
| Urban | 70 | 5. Alcohol Dependence                       | 38,457  | 33,702  | 4,756   | 0      | 0      | 18,930 | 10,364 | 4,407  | 0     | 0     | 2,625  | 1,480  | 651     |
| Urban | 71 | 6. Alzheimer's and other dementia           | 35,814  | 18,149  | 17,665  | 2,116  | 1,350  | 1.085  | 5,718  | 7,880  | 2,372 | 396   | 453    | 4,799  | 9,644   |
| Urban | 72 | 7. Parkinson's Disease                      | 3,030   | 1,640   | 1,390   | 5      | 8      | 23     | 686    | 918    | 9     | 0     | ,12    | 560    | 810     |
| Urban | 73 | 8. Drug Dependence                          | 2,691   | 2,031   | 660     | 0      | 81     | 1,720  | 199    | 31     | 0     | 20    | 563    | 68     | 9       |
| Urban | 74 | F. Sense Organ                              | 31,912  | 16,327  | 15,585  | 234    | 0      | 2,045  | 8,906  | 5,142  | 221   | 0     | 1,527  | 7,636  | 6,201   |
| Urban | 75 | 1. Glaucoma-related<br>Blindness            | 7,828   | 4,563   | 3,265   | 0      | 0      | 430    | 3,504  | 629    | 0     | 0     | 0      | 2,474  | 791     |
| Urban | 76 | 2. Cataract-related<br>Blindness            | 24,084  | 11,764  | 12,320  | 234    | 0      | 1,615  | 5,402  | 4,513  | 221   | 0     | 1,527  | 5,162  | 5,411   |
| Urban | 77 | G. Cardiovascular Diseases                  | 444,017 | 229,003 | 215,015 | 8,798  | 4,371  | 38,051 | 79,324 | 98,459 | 8,126 | 4,535 | 24,068 | 41,805 | 136,481 |
| Urban | 78 | 1. Rheumatic Heart Disease                  | 40,893  | 15,359  | 25,534  | 401    | 1,795  | 5,953  | 4,122  | 3,089  | 501   | 1,790 | 5,719  | 7,195  | 10,328  |
| Urban | 79 | 2. Ischemic Heart Disease                   | 188,974 | 113,692 | 75,282  | 107    | 43     | 18,616 | 44,359 | 50,567 | 53    | 28    | 3,365  | 13,778 | 58,057  |
| Urban | 80 | 3. Cerebrovascular Disease                  | 147,329 | 65,575  | 81,754  | 1,861  | 1,015  | 11,757 | 17,081 | 33,860 | 1,466 | 1,065 | 9,233  | 14,796 | 55,194  |
| Urban | 81 | 4. PEMC                                     | 66,822  | 34,377  | 32,445  | 6,429  | 1,518  | 1,724  | 13,762 | 10,943 | 6,105 | 1,652 | 5,750  | 6,035  | 12,903  |
| Urban | 82 | H. Chronic Respiratory<br>Diseases          | 74,812  | 43,050  | 31,762  | 5,769  | 7,956  | 9,949  | 8,100  | 11,276 | 4,148 | 4,368 | 8,515  | 6,661  | 8,071   |
| Urban | 83 | 1. COPD                                     | 38,310  | 23,033  | 15,277  | 3,660  | 830    | 1,784  | 6,128  | 10,631 | 2,496 | 301   | 889    | 4,472  | 7,119   |
| Urban | 84 | 2. Asthma                                   | 36,502  | 20,017  | 16,485  | 2,109  | 7,126  | 8,165  | 1,972  | 646    | 1,652 | 4,067 | 7,626  | 2,188  | 951     |
| Urban | 85 | I. Diseases of the Digestive<br>System      | 138,915 | 100,898 | 38,017  | 10,593 | 3,064  | 46,230 | 31,566 | 9,444  | 3,372 | 1,047 | 17,407 | 9,687  | 6,503   |
| Urban | 86 | 1. Peptic Ulcer Disease                     | 24,037  | 16,786  | 7,251   | 149    | 254    | 9,656  | 5,171  | 1,556  | 160   | 144   | 3,751  | 2,056  | 1,140   |
| Urban | 87 | 2. Cirrhosis of the Liver                   | 66,801  | 50,612  | 16,188  | 1,079  | 528    | 24,064 | 19,694 | 5,247  | 1,035 | 525   | 6,305  | 5,616  | 2,708   |
| Urban | 88 | J. Diseases of the<br>Genito-Urinary System | 51,192  | 32,586  | 18,606  | 1,818  | 7,187  | 6,685  | 11,802 | 5,095  | 890   | 4,796 | 6,045  | 3,418  | 3,457   |
| Urban | 89 | 1. Nephritis/Nephrosis                      | 43,261  | 24,655  | 18,606  | 1,818  | 7,183  | 6,683  | 5,495  | 3,476  | 890   | 4,796 | 6,045  | 3,418  | 3,457   |

Preliminary results of Disease Burden - NOT FOR QUOTATION 18 May 1995

| Urban | 90  | 2. Benign Prostatic<br>Hypertrophy                    | 7,932   | 7,932   | 0       | 0      | 3      | 2       | 6,307  | 1,619  | 0      | . 0    | 0       | 0      | 0      |
|-------|-----|-------------------------------------------------------|---------|---------|---------|--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|
| Urban | 91  | K. Diseases of the<br>Musculo-Skeletal System         | 14,217  | 4,884   | 9,333   | 0      | 0      | 3,289   | 1,309  | 286    | 0      | 0      | 5,802   | 2,945  | 586    |
| Urban | 92  | 1. Rheumatoid Arthritis                               | 4,850   | 2,317   | 2,533   | 0      | 0      | 1,998   | 212    | 107    | 0      | 0      | 1,890   | 520    | 124    |
| Urban | 93  | 2. Osteoarthritis                                     | 9,367   | 2,567   | 6,800   | 0      | 0      | 1,291   | 1,098  | 179    | 0      | 0      | 3,912   | 2,426  | 462    |
| Urban | 94  | L. Congenital Abnormalities                           | 116,723 | 66,416  | 50,308  | 60,773 | 2,330  | 3,246   | 56     | 10     | 46,692 | 936    | 2,438   | 225    | 17     |
| Urban | 95  | M. Oral Health                                        | 38,140  | 19,260  | 18,879  | 351    | 709    | 12,150  | 3,981  | 2.070  | 332    | 669    | 11,486  | 3,878  | 2,515  |
| Urban | 96  | 1. Dental Caries                                      | 6,695   | 3,407   | 3,288   | 351    | 709    | 1,563   | 535    | 248    | 332    | 669    | 1,478   | 511    | 298    |
| Urban | 97  | 2. Periodontal Disease                                | 24,673  | 12,619  | 12,055  | 0      | 0      | 10,587  | 1,601  | 431    | 0      | • 0    | 10,008  | 1,530  | 517    |
| Urban | .98 | 3 Edentulism                                          | 6,772   | 3,235   | 3,537   | 0      | 0      | 0       | 1,845  | 1,390  | 0      | 0      | 0       | 1,837  | 1,700  |
| Urban | 99  | III. Injuries                                         | 544,585 | 299,087 | 245,498 | 50,225 | 31,935 | 176,557 | 29,547 | 10,823 | 29,706 | 17,183 | 171,114 | 16,207 | 11,286 |
| Urban | 100 | A. Unintentional                                      | 515,877 | 280,770 | 235,107 | 47,091 | 31,102 | 164,465 | 27,849 | 10,263 | 26,922 | 16,692 | 165,859 | 15,071 | 10,562 |
| Urban | 101 | 1. Motor Vehicle Accidents                            | 43,130  | 33,536  | 9,595   | 4,285  | 2,775  | 21,264  | 3,969  | 1,243  | 1,098  | 938    | 4,957   | 1,596  | 1,005  |
| Urban | 102 | 2. Poisonings                                         | 9,566   | 6,622   | 2,944   | 1,411  | 889    | 3,610   | 587    | 125    | 651    | 349    | 1,684   | 215    | 45     |
| Urban | 103 | 3. Falls                                              | 82,670  | 61,095  | 21,575  | 12,542 | 8,683  | 30,104  | 6,287  | 3,479  | 6,597  | 3,237  | 6,446   | 2,233  | 3,062  |
| Urban | 104 | 4. Fires                                              | 184,303 | 53,221  | 131,082 | 10,351 | 4,665  | 33,630  | 3,787  | 788    | 7,673  | 6,060  | 107,696 | 6,085  | 3,568  |
| Urban | 105 | 5. Drowning                                           | 11,621  | 8,900   | 2,722   | 1,516  | 1,470  | 5,049   | 699    | 166    | 550    | 303    | 1,551   | 157    | 161    |
| Urban | 106 | 6. Venamous animals and plants as cause of poisoining | 0       | 0       | 0       | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| Urban | 107 | 7. Foreign body and accidental aspiration             | 0       | 0       | 0       | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| Urban | 108 | 8. Electric Shock                                     | 0       | 0       | 0       | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| Urban | 109 | B. Intentional                                        | 28,709  | 18,318  | 10,391  | 3,135  | 833    | 12,092  | 1,698  | 560    | 2,785  | 491    | 5,254   | 1,136  | 724    |
| Urban | 110 | 1. Self-inflicted                                     | 7,075   | 4,629   | 2,446   | 101    | 38     | 3,920   | 449    | 121    | 34     | 76     | 2,037   | 224    | 74     |
| Urban | 111 | 2. Homicide and Violence                              | 15,191  | 9,269   | 5,923   | 2,596  | 443    | 4,711   | 1,092  | 427    | 2,307  | 178    | 1,980   | 823    | 634    |
| Urban | 112 | 3. Legal intervention                                 | 6,443   | 4,420   | 2,023   | 438    | 352    | 3,461   | 156    | 13     | 444    | 237    | 1,237   | 88     | 16     |

#### Annexure VII

#### **TUBERCULOSIS**

Tuberculosis is one of the major infectious diseases in India. A wealth of epidemilogical data is avaialble in the country due to significant contributions made by two pioneering institutions the National Tuberculosis Institute (NTI) and the Tuberculosis Research Centre (TRC). In addition to the wide ranging studies undertaken by these institutions, longitudianl studies have been undertaken by Pamra et al in New Delhi and Fromot Moller et al in Andhra Pradesh. Few cross sectional studis undertaken in different parts of AP provide useful information on TB prevalence in the State.

#### Natural History

,, 3

3

3

)

2

2

)

2

2

2

)

>

)

>

)

3

)

3

)

,

)

,

)

Tuberculosis is caused by Mycobacterium tuberculosis, which most commonly affects the lungs. The infection is usually transmitted from persons with pulmonary tuberculosis to other persons by droplets . The bacilli reaching the lungs cause a local non-specific inflammatory response known as primary complex in the lung and in the corresponding lymph nodes. In most instances both the lesions of the primary complex heal spontaneously leaving dormant bacteria which may get reactivated during the later part of the life. Thus, the clinical disease may occur weeks to years after primary infection. The usual incubation period from infection to primary lesion is between 4-12 weeks. Allergy and immunity against tuberculosis are produced within 6-8 weeks. This results in formation of granulomas around the focus of bacilli. The most important aspect of the natural history of the tuberculosis is that infection may lead to relatively small proportion of cases at a later date. Occasionally, in case of new borne and small children, the infection may progress resulting in serious forms of tuberculosis such as milliary tuberculosis or tuberculous meningitis. Rarely the infection is through the digestive tract due to consumption of contaminated milk containing Mycobacterium bovis from cows suffering from tuberculosis

#### I. Steps for the estimation:

To begin with a detailed review of epidemilogical studies on Tuberulosis was undertaken and core expert was identified This is followed by a two day workshop. Participants included Core expert, Disease experts, Programme managers and Public health Specialists. The following

steps have been followed to estimate the incidence, duration and case fatality rates of tuberculosis in Andhra Pradesh.

- 1. Case definition for adult pulmonary and extrapumonary tuberculosis was arrived at.
- 2. The age specific incidence pattern of tuberculosis (but not necessarily the magnitude) was determined using the data from cohort stuides undertaken in India.
- 3. A review of trends of Tuberculosis over the last 30 years was undertaken.
- 4. Adjustment factors for screening method were arrived after establishing relationship of true prevalence to different screening methods.
- 5. Adjustment factor for extrapulmonary tuberculosis were arrived after establishing relationship between prevalence of pulmonary tuberculosis and extrapulmonary tuberculosis.
- 6. Prevalence of pulmonary tuberculosis in rural AP was estimated from studies after adjusting for deficiency in screening method.
- 7. Estimates of age specific remission (or duration) and case fatality rates were made using Madanapalle data after adjusting for improved remission rates reported from recent evaluation study of district TB control programme.
- 8. Cause specific deaths due to TB were estimated from SCD and MCCD data sets.
- 9. The age sex specific incidence pattern (step 2), remission & case fatality rate (step 7) and cause specific deaths (step 8) were used as inputs to DISMOD. By an Iterative process the incidence rates were adjusted to match close to the estimated prevalence and cause specific mortality for urban and rural AP.

#### Case definition

3

5

3

3

3

3

3

3

3

3

3

3

3

>

>

3

3

>

Ĵ

.)

#### 1. Pulmonary tuberculosis:

In epidemiological surveys a case of pulmonary tuberculosis is identified on the basis of smear positivity (either on direct microscopy or culture) and or X-ray abnormality suggestive of tuberculosis. All the cases diagnosed on the basis of X-ray abnormality need not be due to tuberculosis. Reliability and validity of X-ray readings have been demonstrated to be low by various epidemilogical studies. The cohort studies undertaken by Tuberculosis Research Centre (BCG trial), and National Tuberculosis Institute included only the bacillary cases for arriving at the incidence of tuberculosis. In addition to satisfying Koch's postuales, a smear positive case requires identification and treatment on a priority basis to reduce the chances of further spread. Also, untreated smear negative cases would eventually become smear positive. Hence, only the bacillary cases were included for estimation of incidence and prevalence of pulmonary

# 3 3 0 3 3 3 3. 5 3 C 3 3 3 3 3 3 Ĵ 3 Э Э ) ) ) 7 9 1 )

# Preliminary results of Disease Burden -NOT FOR QUOTATION 9 October 1995

tuberculosis among the adults in A.P. However, in case of children suffering from pulmonary tuberculosis, due to difficulty in obtaining sputum samples, bacillary cases alone may not reflect the true burden.

The BCG trial, after undertaking a detailed review, has defined bacillary case of tuberculosis as : a) cases positive on two cultures b) cases positive on one culture only and c) cases positive on smear only, excluding those showing 1-3 Acid Fast Bacilli on entire smear

The BCG trial classified an individual whose sputum is positive on smear and negative on culture as a bacillary case of tuberculosis. The ICMR-National Sample Survey and NTI studies did not classify individuals who are positive on direct smear and negative on culture as cases of tuberculosis. We have used the BCG trial definition for the bacillary cases for the following two reasons. If the the time lag between the collection of the sample and setting up the culture is longer, the chances of getting a negative culture will be more even in the presence of bacilli. The second factor is the strength of NaoH used for preparing the sputum for culture. A stronger NaoH may destroy the live bacilli and hence may not yield a positive culture. Since the definition of the bacillary case already excludes the sputum samples demonstrating 1-3 bacilli in the entire smear, it is less likely that there is a reading error in smear examination. Hence, it is desirable to include the smear positive and culture negative cases for epidemiological estimates.

## 2. Extrapulmonary tuberculosis:

All cases diagnosed on clinical and or X-ray basis as suffering from active extrapulmonary tuberculosis have been included in this group.

# Age sex distribution of Tuberculosis incidence:

The four cohort studies provide information on incidence of tuberculosis in India have been summerised in Table 1. These include Tuberculosis Prevention Trial undertaken by Tuberculosis Research Centre (TRC), Madras, NTI study near Bangalore (1961-68)<sup>1</sup>, Frimodt Moller's study in Madanapalle<sup>2</sup> (1950-55) and Pamra's study in Delhi<sup>3</sup>. A summary of these studies is presented in the Table 2.1

Tuberculosis In a rural population of South India: a five year epidemiological study, NTI, Bangalore; Bull. WHO 1974, 51. pp.

<sup>&</sup>lt;sup>2</sup> J.Frimodt Moller; A community wide tuberculosis study in a south Indian rural population, 1950-55; Bull WHO 1960, 22. PP.61-170

<sup>&</sup>lt;sup>3</sup> S.P.Pamra et al; Changes in prevalence and incidence of pulmonary tuberculosis in Delhi in recent years; Ind. J. Tuberculosis vol., No.2. pp.57-64

| Study                                              | BCG trial                                                                                                                                                                                                                                  | NTI                                                                                                                                                                                                                                                                              | Madanapalli                                                                                                                                                                           | Pamra                                                                                                                                            |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Year                                               | 1968                                                                                                                                                                                                                                       | 1961-68                                                                                                                                                                                                                                                                          | 1950-55                                                                                                                                                                               | 1962-70                                                                                                                                          |
| Study location                                     | Tamil Nadu                                                                                                                                                                                                                                 | Karnataka                                                                                                                                                                                                                                                                        | Andhra Pradesh                                                                                                                                                                        | Delhi                                                                                                                                            |
| Агеа                                               | Chingleput district                                                                                                                                                                                                                        | 119 randomly<br>selected villages from<br>three taluks of<br>Banglore district                                                                                                                                                                                                   | Population residing<br>within 10 miles of<br>Madanapalli town<br>including accessible<br>villages and small<br>towns                                                                  | Urban Population<br>under surveillance of<br>New Delhi<br>Tuberculosis centre                                                                    |
| Population covered                                 | 360000                                                                                                                                                                                                                                     | 62000                                                                                                                                                                                                                                                                            | 60,000                                                                                                                                                                                | 30,0000                                                                                                                                          |
| Duration                                           | 7.5                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                     | 8                                                                                                                                                |
| No. of follow-up<br>rounds                         | 3                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                     | 3                                                                                                                                                |
| Duration between<br>two follow-up<br>rounds (yrs.) | 2.5                                                                                                                                                                                                                                        | 1.5-2                                                                                                                                                                                                                                                                            | 0.7-1.6                                                                                                                                                                               | 2-2.5                                                                                                                                            |
| Eligibility criteria                               | All individuals >10<br>yrs                                                                                                                                                                                                                 | All individuals > 5<br>yrs                                                                                                                                                                                                                                                       | All individuals > 5<br>yrs                                                                                                                                                            | All individuals > 5<br>years                                                                                                                     |
| Methodology                                        | Initial X ray. Film<br>read by two readers<br>From individuals<br>whose films<br>interpreted as<br>abnormal by either of<br>two readers sputum<br>specimens were<br>collected and<br>subjected to direct<br>microscopy and two<br>cultures | Initial X ray. Film<br>read by two<br>independent readers<br>From individuals<br>whose films<br>interpreted as<br>abnormal by two,<br>any of two and<br>tecl:nically<br>inadequate two<br>samples of sputum<br>collected and<br>subjected to direct<br>microscopy and<br>culture | Initial MMR<br>Film read by one<br>experienced reader<br>X ray abnormals<br>subjected for larger X<br>ray and smear direct<br>microscopy<br>Sputum culture only<br>for admitted cases | Initial X ray. Film<br>read by two<br>independent readers<br>From Individuals                                                                    |
| Definition of a case                               |                                                                                                                                                                                                                                            | Eligible individual<br>who was culture<br>negative with normal<br>or abnormal X ray in<br>all the preceding<br>surveys and who<br>becomes culture<br>positive with X ray<br>abnormality in<br>current survey                                                                     | Fresh cases detected<br>after an initial<br>normal MMR.<br>Separate analysis<br>done for bacillary<br>(direct smear) and X<br>ray abnormals.                                          | Fresh case among<br>previously X ray<br>negative. Separate<br>analysis done for<br>bacillary (direct<br>smear & culture) and<br>X ray abnormals. |
| Crude                                              | 131-366                                                                                                                                                                                                                                    | 13,1-176                                                                                                                                                                                                                                                                         | 16-49                                                                                                                                                                                 | 90-100                                                                                                                                           |

3.

Э

Э

Э

Э

)

)

)

)

In all the studies reviewed (except Pamra's study) the incidence tended to increase with age. This is in sharp contrast with the total absence of peak in young adulthood (between 25-30 yrs) generally noticed in the west<sup>45</sup>. This brings out the issue to what extent the new cases occurring in the later parts of adult life are due to new infection or due to flare up of old endogenous infection acquired earlier. Fimodt Moller observed that 66% of the new cases detected at Madanapalle had an earlier tuberculin reaction of 10 mm or more suggesting that majority of the new cases could be due to reactivation of old infection. Review of NTI data by VV Krishnamurthy et al" also had shown that 72% of the new cases came from a reservoir of previously infected population. Since a large reservoir of infected cases are existing in the community, it is not surprising to notice that most of the incidence cases occur with advancing age when the resistance of an individual is likely to go down there by resulting in reactivation of existing infection. Though Pamra's study shows a peak in the younger age groups, the study covered a population residing in urban slums of Delhi which is more likely to be biased towards younger and fit individuals. Hence, we have decided to follow the incidence pattern and need not necessarily the magnitude of TRC, NTI and Madanapalli studies.



Cochrane AL Cox J G and Jarman T F; 1955 British Medical Journal 1., 371.

Groth Peterson, E, Knudsen J et al 1957 Nord Med 58 1361

• VV Krishna Murthy et al. Incidence of Tuberculosis among newly infected population and in relation to the duration of infected status; Indian J Tuberculosis Vol. XXIII No.1.



Though Madanapalle study was from A.P. the population covered in each age group is small and nearly four decades have passed since the survey. Pamra's study is also confined to a small urban population of 30,000 which is influenced by urban migration. In the NTI study the incidence was calculated from difference noticed between two prevalence surveys and hence missed the new cases occurring between the surveys which either got cured or died. The TRC study covered a large population and also ensured that new cases appearing between the surveys, are not missed. It is also more recent and hence provides a more realistic estimate of incidence. We have used the age and sex distribution of incidence cases reported from the BCG trial.

#### **Tuberculosis** Trends:

1

5

3

3

3

J

3

5

3

3

3

3

3

5

3

3

3

5

3

5

3

3

Э

3

-

う う

)

)

)

It is difficult to get correct data on occurrence of new cases of adult tuberculosis from the same area on a continuous basis. Hence, prevalence of tuberculosis infection obtained through repeated tuberculin testings in children, over a period of time, is recognised to be a reliable indicator of tuberculosis incidence and its trend in a community<sup>7</sup>. This is considered to be independent of efficiency of tuberculosis control programme. A WHO study group <sup>8</sup> has recommended that such survey can be undertaken once in five years.

Styblo.K., Recent advances in epidemiological research in tuberculosis. Adv. Tuberc. Res. 20; 1980. 1. WHO Report of the South East Asian Research Study Group on tuberculosis 1981 p.11.

Recently the TRC has undertaken a study which followed up two panchayat unions covered in the BCG trial and repeated tuberculin testing among the children aged 1-9 vrs. Tuberculin testing was done twice at intervals of 10 and 15 yrs<sup>9</sup>. The results of the study have clearly shown that risk of tuberculosis infection remained unchanged over a period of 15 yr. Risk of new infection experienced by a child aged 1-9 yr. in 1984 was same as that experienced by his counterpart 15 yr. Studies carried out in other parts of the country also suggest that the tuberculosis incidence remained more or less constant. Gothi et al have reported that the prevalence of tuberculosis infection remained constant over a twelve year period (1961-73)<sup>10</sup>. No decline in prevalence of infection was noticed among the children aged 0-9 yrs over a period of five years (1974-79) in a study undertaken by Chakraborty et al in Bangalore district of Karnataka state<sup>11</sup>. No appreciable change in tuberculosis situation was noticed over a period of 15 yrs (1962-77) in another study undertaken at Delhi<sup>12</sup>. In the state of Andhra Pradesh no such studies were undertaken. However, considering the similarities in population characteristics, socio-economic situation and geographical proximity of A.P. to Tamil Nadu and Karnataka, we have assumed that the tuberculosis situation in A.P. also remained constant. This assumption permitted us to compare the different studies undertaken in AP.

#### Adjustment for Screening methods:

3

9

3

3

3

)

3

>

3

Э

3

3

3

3

3

3

3

3

3

Ì

3

3

9

9

)

3

9

)

7

)

)

)

)

)

9

)

12

Conventionally two screening methods are used to detect a case of tuberculosis in the surveys. The yield of the tuberculosis cases in population based surveys is determined by the type of screening method adopted. These screening methods are summarised herewith.

- 1. Initial screening of all eligible persons is done with X-ray. All those with X-rays read as abnormal are subjected to sputum and/or culture examination. This approach will miss the sputum positive cases which do not exhibit any radiological abnormalities.
- The second approach, which is currently being followed in the National programme, identifies the symptomatics first. The symptomatics are then subjected to sputum examination followed by an X-ray. Since all the cases suffering from tuberculosis need not be symptomatic, this approach will miss the asymptomatic cases.
- Mayurnath S. et al. Prevalence study of tuberculosis infection over fifteen years in a rural population in Chingleput district (south India); Indian J Med. Res. (A) 93, March 1991, pp 74-80
- <sup>10</sup> Gothi.G.D., A.K.Chakraborty et al., Prevalence of tuberculosis in a south Indian district- Twelve years after initial survey. Indian J Tuberc. 26 (1979), pp 121.
- <sup>11</sup> Chakraborthy A.K. et al, Tuberculosis in rural population of south India: Report on five surveys. Indian J Tuberc. 29 (1982), pp 152

Goyal SS et al Tuberculosis trends in an urban community. Indian J Tuberc 25 (1978) pp..

Э

Э

)

)

Э

Э

>

)

3. Another screening method used in few studies screened the symptomatics first and subjected them to X-ray. Only symptomatics having abnormal X-rays were subjected to on spot sputum microscopy. This screening method will miss the cases among asymptomatics and also the symptomatic cases with normal X-rays.

If the relationship of cases to different screening methods is known, it will be possible to derive more accurate estimates of prevalence from almost all studies. A recent TRC study from North Arcot district, Tamil Nadu<sup>13</sup> provides useful data to estimate this relationship. The results of this study help to estimate the missing cases.

About 25,688 individuals were included in the study out of whom sputum samples were collected from 6007 on the basis of symptomatic status or X-ray abnormality. The 205 sputum positive cases detected from this study gives a prevalence of 800 per 100,000. If only X ray is used for screening, 144 cases would have been identified which gives a prevalence of 560/100,000. Similarly if screening is confined only to detection of symptomatics it would yield 135 cases which gives a prevalence of 526/100,000. Thus, either methods of screening would miss about a third of the existing tuberculosis cases. About a half of the smear positive cases did not show any bacilli on direct microscopy and were detected on the basis of positive culture. About 15% of the smear positive cases, though positive on direct microscopy, did not yield any positive culture. Based on these relationships we have arrived at adjustment factors to correct for cases missed by each of the screening method.

| Adjustment factor for type of screening procedure                                 |                        |                                       |
|-----------------------------------------------------------------------------------|------------------------|---------------------------------------|
| Screening method                                                                  | No. of<br>+ve<br>cases | Adjustm<br>ent<br>factor <sup>1</sup> |
| Symptom survey followed by smear examination                                      | 73                     | 2.8                                   |
| Symptom survey followed by smear examination and culture                          | 112                    | 1.8                                   |
| X-ray survey followed by smear examination for X-ray abnormals                    | 73                     | 2.8                                   |
| X-ray survey followed by smear examination and culture for X-ray abnormals        | 133                    | 1.5                                   |
| Symptom survey followed by X-ray and smear examination for X-ray abnormals        | 47                     | 4.4                                   |
| Symptom survey followed by X-ray, smear examination & culture for X-ray abnormals | 71                     | 2.9                                   |
| Total smear and culture positive cases                                            | 205                    |                                       |
| Total population                                                                  | 25688                  |                                       |
| Total smear & culture positive cases/Cases detected by screening method           | 1                      | 11                                    |

Tuberculosis prevalence survey in North Arcot District, Annual Report of TRC 1990 pp 107--118.

#### Preliminary results of Disease Burden -NOT FOR QUOTATION 9 October 1995

# Establishing relationship between pulmonary and extrapulmonary tuberculosis:

Very little population based data is available on the prevalence of extrapulmonary tuberculosis. The intensified case detection camp held in Bhadrachalam (A.P.) in 1982 shows that out of the total tuberculosis cases detected, 15% were constituted by persons suffering from extrapulmonary tuberculosis. An analysis of all tuberculosis patients attending different departments at Gandhi Hospital, Hyderabad<sup>14</sup> indicated that 16% of the total cases were extrapulmonary. This, however, may not reflect the community situation. The pulmonary tuberculosis patients are more likely to receive domicilliary treatment and only more complicated cases tend to come to hospitals. On the contrary, higher proportion of extrapulmonary tuberculosis patients will attend hospitals. We may not be far off from truth if we assume that one out of three cases of pulmonary tuberculosis will attend hospital. In case of extrapulmonary tuberculosis we can assume that either all the affected or at least half of the affected will attend hospital. We have taken average of these two and applied this relationship to arrive at the adjustment factor for extrapulmonary tuberculosis.

| Adjustment factor for Extra                           | pulmonary ti       | ıberculosis              |                |
|-------------------------------------------------------|--------------------|--------------------------|----------------|
| Place                                                 | Pulmonary<br>cases | Extra<br>pulmonary cases | Total<br>cases |
| Hospital                                              | 84                 | 16                       | 1001           |
| Community with higher prevalence of extrapulmonary TB | 252²               | 323                      | 284            |
| Community with lower prevalence of extrapulmonary TB  | 252                | 16                       | 268            |
| Community average                                     | 252                | 24                       | 276            |
| Adjustment factor for extrapulmonary tuberculosis     | -                  |                          | 1.1            |
| 1 Total cases were assumed to be 100                  |                    | 040                      |                |
| <sup>2</sup> Pulmonary cases in hospital X 3          |                    | r<br>                    |                |
| S Extrapulmonary cases in hospital X 2                | 8                  |                          |                |

#### Review of TB prevalence studies from A.P.

Out of the published studies, the National sample survey (ICMR in 1953-58) is a large scale study which followed a well standardised protocol. Recently, two population based surveys were undertaken in the districts of Khammam and Medak by the TB control programme officers.



The emphasis of the Khammam study was on tribal population while the Medak study covered the rural population. We have summerised these studies herewith.We, however, restricted the data from these studies only to population above 15 yrs. to make them comparable with other studies. This is also influenced by the fact that pulmonary tuberculosis is less common below 15 yrs.

1. ICMR National Sample Survey (1955-59):

フタ

9

y y

>

5

>

>

)

3

3

>

>

2

3

3

3

>

>

>

3

Э

Э

2

>

9

>

>

)

3

>

)

3

Э

E

Ð

Э

Э

The first major attempt to assess the magnitude of tuberculosis in the community was undertaken by ICMR in 1955-59. The survey covered a population of 116,539,000 aged above five years. Two zones (Hyderabad & Madanapalle) out of the total six zones covered in the study included parts of A.P. Each zone was further stratified in to city, towns and villages. Entire population residing at the selected sampling unit was listed. All those above the age of five years constituted the eligibles and were subjected to a miniature radiogram. Each X-ray film was read by two independent readers. A sample of the abnormals was sent to a central reader for consistency check. Bacteriological examination (on spot specimen) was carried out in all cases which were considered abnormal by one or both readers. The material collected for bacteriological examination consisted of sputum (two slides) for direct smear examination, sputum (2 tubes) for culture. If sputum was not available laryngeal swabs (2 tubes) were collected for culture. The group that undertook the survey in Madanapalli zone was involved in the tuberculosis control activities for a long time. Hence, the bacillary case yield was noticed to be higher compared to Hyderabad zone. The reported prevalence of bacillary cases in Madanapalle zone was 1144/100000 and 850/100000 in towns and villages respectively.

2. Tuberculosis prevalence survey in Rural Medak district 1992:

To assess the prevalence of tuberculosis in the rural community a survey was undertaken in Medak district during the year 1992. The study also aimed to understand the epidemiological pattern of the disease and assess extent of utilisation of health services available for TB control.

The study was undertaken in thirty three villages selected by random sampling method. A door to door survey was undertaken covering all the residents aged above five years in the selected villages to identify chest symptomatics. NTI protocol which is standardised for health workers bias was used for symptomatic survey. The proportion of symptomatics above the age of 15 yrs. reported in the study is comparable to that of North Arcot and Raichur studies undertaken by TRC. On the spot sputum was collected and a single sputum examination done to

2

.5

3

3

3

3

3

3.

Č

5'

3

3

3

3

3

3

3

5

3

Э

Э

5

J

D

Э

Э.

D

3

Э

2

Э

3

3

3

7

3

detect Acid Fast Bacillus (AFB) by Zeihl Nelson's stain. No culture or concentration techniques have been used. During the second phase chest symptomatics identified were subjected to MMR. The MMR was read by a single reader trained at National Tuberculosis Institute (NTI).

A total of 48,223 individuals were listed from the 31 villages covered. The total population above 15 yrs was 30,863. Out of the population above 15 yrs. 1196 symptomatics were identified. Out of the chest symptomatics identified 847 (70.82%) could be subjected for sputum examination and successful MMRs could be taken for 662 (55%). A total of 50 smear positive cases were detected. This gives a prevalence rate of 162/100,000 for sputum positive cases. The prevalence rates were higher among males (male female ratio = 7:3).

| Summary of Medak study findings                     |        |         |  |  |  |  |  |  |
|-----------------------------------------------------|--------|---------|--|--|--|--|--|--|
| Description                                         | Number | Percent |  |  |  |  |  |  |
| Total population enumerated                         | 48223  |         |  |  |  |  |  |  |
| Population above 15 yrs.                            | 30863  | 100     |  |  |  |  |  |  |
| Chest symptomatics listed                           | 1196   | 3.9     |  |  |  |  |  |  |
| No. of symptomatics subjected to sputum examination | 847    | 70.82*  |  |  |  |  |  |  |
| Prevalence of smear positives                       | 50     | 0.2     |  |  |  |  |  |  |
| No. of symptomatics subjected to MMR                | 712    | 59.53*  |  |  |  |  |  |  |
| No.of MMRs technically adequate                     | 631    | 52.76*  |  |  |  |  |  |  |
| MMR Positives                                       | 129    | 0.4     |  |  |  |  |  |  |
| Extra pulmonary tuberculosis                        | 2      | 0.1     |  |  |  |  |  |  |
| * Expressed as percent of symptomatics listed       |        |         |  |  |  |  |  |  |

# 3. Intensified TB case finding in Bhadrachalam Division, Khammam District (1982):

An intensified case finding activity was undertaken in Bhadrachalam division of Khammam district in 1982 by the TB control programme of A.P. Initial enumeration of population was done to list the population aged above five years. A door to door survey was undertaken by the paramedics to identify the chest symptomatics among the listed population. The symptomatics listed were subjected to MMR. The films were read by one reader trained at NTI. Only the individuals diagnosed to be having abnormal MMR were subjected to sputum examination which included direct microscopy of on the spot sputum sample. Out of the total 1,46,449 population surveyed, 92,263 individuals above the age of fifteen years were listed. The screening for symptomatics yielded 5,189 symptomatics. Out of the symptomatics listed 5,183 were subjected

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

333

3

Э

Э

2

3

うう

)

)

3

3

2

Э

9

Э

3

E

3

for MMR. Among the individuals subjected for MMR, 1465 were diagnosed as radiologically abnormal. Out of the 1465 radiologically abnormal individuals identified, sputum examination was done for 1267 and 473 persons were detected to be smear positives. The study gives a prevalence rate of 513/100,000. Out of the detected cases the male female ratio was around 2:1. The prevalence of tuberculosis among tribals and non tribals was similar.

| Summary of Bhadrachalam stud                        | y findings |         |
|-----------------------------------------------------|------------|---------|
| Description                                         | Number     | Percent |
| Total population                                    | 146449     |         |
| Population above 15 yrs.                            | 92263      | 100     |
| Chest symptomatics listed                           | 5189       | 5.6     |
| No. of symptomatics subjected to MMR                | 5183       | 99.9*   |
| MMR Positives                                       | 1465       | 1.6     |
| No. of symptomatics subjected to onspot sputum exam | 1267       | 24.42*  |
| Sputum positives                                    | 473        | 0.5     |
| Extra pulmonary tuberculosis                        | 84         | 0.1     |
| * percent of symptomatics listed                    |            |         |

## 4. Prevalence of Tuberculosis after adjusting for screening methods in rural AP:

As a first step we have applied the adjustment factor appropriate for the type of screening method used to estimate the true prevalence of TB.

| Prevalence of Tuberculosis/1000 population |                   |                  |  |  |  |  |
|--------------------------------------------|-------------------|------------------|--|--|--|--|
| Survey                                     | Before adjustment | After adjustment |  |  |  |  |
| ICMR Sample Survey                         | 850               | 1642             |  |  |  |  |
| Medåk survey                               | 162               | 706              |  |  |  |  |
| Bhadrachalam survey.                       | 513               | 2832             |  |  |  |  |

# 5. Estimates for current prevalence of tuberculosis in rural A.P.

Out of the three studies, Medak study is most recent. The ICMR sample survey was conducted nearly four decades back when there was no National programme for tuberculosis control and anti tuberculosis drugs were not freely available. This makes it inconsistent with the burden of disease methodology which estimates the burden at the current operational efficiency of the intervention programme. The Bhadrachalam study was undertaken in tribal area. As the tribal population constitutes about 6% of the total population of the State, the results of this study can

not be applied for the entire State. The population residing in tribal areas are included in the rural population in census data. The rural population constitutes about 73% of the total State's population. Out of the rural population, 8.65% was constituted by Scheduled tribes. We have arrived at the mean prevalence of tuberculosis for rural population by applying prevalence rates of Medak study to the non tribal rural population (91.35%) and prevalence rates of Bhadrachalam to the tribal population (8.65%).

Estimated prevalence of TB in rural A.P.

 $= (706 \times 0.9135) + (2832 \times 0.0865)$ = 890/100,000 adults

This estimate is close to the results of recent survey undertaken by TRC at Raichur district in Karnataka<sup>15</sup> (1090/100,000 population).

# 6. Deriving age & sex specific incidence of Tuberculosis in rural and urban A.P. using DISMOD

The burden of disease methodology requires estimation of age specific incidence and duration of disability to estimate the DALYs lost. In addition, the consistency of epidemiological estimates need to be checked. A disease model built on known relationships between different epidemiological parameters by the Burden of Disease Unit (DISMOD) helps in achieving these objectives. The model requires instantaneous remission and case fatality rates of the disease to be used as inputs. Estimation of these instantaneous rates requires follow-up studies. Out of three studies undertaken in rural south India, Madanapalle study was from Andhra Pradesh. It also provides age specific data on remission and case fatality. The results of the study are presented in the table.

| Outo  | come of | the new<br>from | vly diag<br>Madai | gnosed c<br>napally | ases or study | 1 Tuber | culosis |  |  |
|-------|---------|-----------------|-------------------|---------------------|---------------|---------|---------|--|--|
| Age   | Initial | 1st Year        |                   |                     | 5th year      |         |         |  |  |
| group | cases   | No.died         | No.TB+            | No.TB-              | No.died       | No.TB+  | No.TB-  |  |  |
| 15-24 | 167     | 14              | 54                | 99                  | 40            | 34      | 93      |  |  |
| 25-34 | 337     | 22              | 129               | 186                 | 93            | - 78    | 166     |  |  |
| 35-44 | 298     | 26              | 110               | 162                 | 108           | 52      | 138     |  |  |
| 45-54 | 210     | 29              | 86                | 95                  | 90            | 33      | 87      |  |  |
| 55+   | 144     | 19              | 53                | 72                  | 74            | 26      | 44      |  |  |

3

C.

C.

6

5

C C

3.

Ċ

3

5

3

3

3

3

Э

3

3

3

9

)

)

)

.

Tuberculosis prevalence in Raichur District. Annual report of Tuberculosis Research Institute (ICMR) 1989 pp 120-131.

til.

T

S S

じっつ

Э

| Ou    | t come  |                   |                     | osed case<br>e study (p |                   | berculosis          | s from            |  |
|-------|---------|-------------------|---------------------|-------------------------|-------------------|---------------------|-------------------|--|
| Age   | Initial | lst Year          |                     |                         | 5th year          |                     |                   |  |
| group | cases   | Mortality<br>rate | Persistance<br>rate | Remission<br>rate       | Mortality<br>rate | Persistance<br>rate | Remission<br>rate |  |
| 15-24 | 167     | 8.38              | 32.34               | 59.28                   | 23.95             | 20.36               | 55.69             |  |
| 25-34 | 337     | 6.53              | 38.28               | 55.19                   | 27.6              | 23.15               | 49.26             |  |
| 35-44 | 298     | 8.72              | 36.91               | 54.37                   | 36.24             | 17.45               | 46.31             |  |
| 45-54 | 210     | İ3.81             | 40.95               | 45.24                   | 42.86             | 15.71               | 41.43             |  |
| 55+   | 144     | 13.19             | 36.81               | 50                      | 51.38             | 18.06               | 30.56             |  |

Instantaneous remission and case fatality rates were calculated from this data using the outcome at fifth year.

| Age specific instantaneous rates from<br>Madanapalle study |                         |                                     |  |  |  |  |  |
|------------------------------------------------------------|-------------------------|-------------------------------------|--|--|--|--|--|
| Age group                                                  | Instantaneous remission | Instantaneous<br>case fatality rate |  |  |  |  |  |
| 15-24                                                      | 0.23                    | 0.1 .                               |  |  |  |  |  |
| 25-34                                                      | 0.19                    | 0.11                                |  |  |  |  |  |
| 35-44                                                      | 0.2                     | 0.15                                |  |  |  |  |  |
| 45-54                                                      | 0.18                    | 0.18                                |  |  |  |  |  |
| 55+                                                        | 0.13                    | 0.21                                |  |  |  |  |  |
| All                                                        | 0.19                    | 0.14                                |  |  |  |  |  |

The Madanapalle study was undertaken in early sixties and subsequently there has been a phenomenal change in Tuberculosis chemotherapy which may influence the outcome. Hence, we have reviewed recent studies which assessed the outcome of newly detected tuberculosis cases. Dr.Manjula datta et al<sup>16</sup> have assessed the outcome of 2257 smear positive cases registered for treatment under District Tuberculosis Control programme in North Arcot district, Tamil Nadu. This study also captures the outcome of the defaulters and hence consistent with the burden of disease approach of estimating the disability and mortality at the current operational efficiency of the intervention programmes. When we compared the aggregate remission and case fatality (after excluding general mortality rate), we found that mortality rates of Madanapalle are comparable with North Arcot while remission rates in North Arcot are 2.5 times higher. Though both cohorts received treatment, the North Arcot patients had access to better Chemotherapy (69% received

<sup>&</sup>lt;sup>16</sup> Manjula Datta et al. Critical assessment of smear-positive pulmonary tuberculosis patients after chemotherapy under the district tuberculosis programme. Tubercle and Lung Disease 74, 1993 pp 180-186.

Y

N.

3

3

5

S

3

C.

3

Э.

5

5

3

C

5

3

3

3

3

3

Э

3

3

3

3

3

3

Э.

3

3

0

3

3

3

Э

J

3

Short Course Chemotherapy) which explains better remission. The marginal difference between mortality rates could be due to the known observation that even INAH mono therapy has favourable impact on mortality reduction. Considering the fact that Madanapalle study was undertaken in Andhra Pradesh and provides age specific follow-up data we have used it as an input to DISMOD after applying an adjustment factor of 2.5 to correct for current treatment practices and patient compliance. While Madanapalle data on outcome is not available by sex, North Arcot study gives only information on deaths by sex. Hence, we have used NTI data to arrive at adjustment factors for sex.

|           |                                | ]                               | DISMOD                           | outputs for                | r Rural AI                     | )                               |                                  |                            |
|-----------|--------------------------------|---------------------------------|----------------------------------|----------------------------|--------------------------------|---------------------------------|----------------------------------|----------------------------|
| Age group | Male                           |                                 |                                  |                            | Female                         |                                 |                                  |                            |
|           | Annual<br>incidence/<br>100000 | Annual<br>prevalence/<br>100000 | Annual age<br>specific<br>deaths | SCD<br>estimated<br>déaths | Annual<br>incidence/<br>100000 | Annual<br>prevalence/<br>100000 | Annual age<br>specific<br>deaths | SCD<br>estimated<br>deaths |
| 0-4       | 15.8                           | 15.2                            | 34                               | 509                        | 11.9                           | 13.6                            | 27                               | 218                        |
| 5-14      | 20                             | 28                              | 131                              | 185                        | 19                             | 28.9                            | 115                              | 316                        |
| 15-44     | 439.5                          | 617.8                           | 7775                             | · 6268                     | 233                            | 45.7                            | 4166                             | 4199                       |
| 45-59     | 1227.5                         | 1846.8                          | 9582                             | 14296                      | 655.2                          | 1298.5                          | 5627                             | 10590                      |
| 60+       | 1555.5                         | 2918.2                          | 8385                             | 9784                       | 735.2                          | 2078.4                          | 3819                             | 5296                       |
| All       | 465.1                          | 714.7                           | 25907                            | 31042                      | 248.2                          | 532.3                           | 13754                            | 20619                      |

Using these instantaneous rates as inputs we have adjusted the instantaneous incidence rates to get the best match for the estimated prevalence and deaths.

The DISMOD outputs suggest that we have to go for higher age specific incidence rates than reported to arrive closer to the estimated deaths and prevalence. Even than the estimated deaths are lower than the deaths estimated from Survey of Cause of Death surveys. Considering the fact that SCD data is based on lay reporting there is more likelihood of overestimating the tuberculosis deaths we felt the DISMOD outputs are fairly representative of prevailing cause specific mortality due to tuberculosis.

When we applied the same rates in urban areas, the death estimates were found to be very high. Our estimates of prevalence are based on surveys undertaken in rural areas. Though the National Sample Survey reported higher prevalence in urban areas, we felt that the urban residents have better access to treatment and hence better remission rates. Hence, we have adjusted the remission rates of the rural areas by a factor of 1.25 and then adjusted the incidence rates to match the deaths estimated from MCCD data. These results are presented in table.

·S

5

G

5

3

5

S S

3

3

3

3

3

3

3

3

3

Э

E

Э

2

3

?

7

3

)

)

|           |                                | Ľ                               | ISMOD o                          | utputs for                  | Ürban Al                       | 2                               |                                  |                             |
|-----------|--------------------------------|---------------------------------|----------------------------------|-----------------------------|--------------------------------|---------------------------------|----------------------------------|-----------------------------|
| Age group | Male                           |                                 |                                  |                             | Female                         |                                 | ne-5                             |                             |
|           | Annual<br>incidence/<br>100000 | Annual<br>prevalence/<br>100000 | Annual age<br>specific<br>deaths | MCCD<br>estimated<br>deaths | Annual<br>incidence/<br>100000 | Annual<br>prevalence/<br>100000 | Annual age<br>specific<br>deaths | MCCD<br>estimated<br>deaths |
| 0-4       | 14.3                           | 12.2                            | 10                               | 479                         | 10.7                           | 11.1                            | 8                                | 257                         |
| 5-14      | 18                             | 20.7                            | 36                               | 136                         | 13.5                           | 21.7                            | 32                               | 72                          |
| 15-44     | 398.6                          | 470.3                           | 2354                             | 2370                        | 141                            | 233.1                           | 840                              | 837                         |
| 45-59     | 1019.2                         | 1301.3                          | 2231                             | 2211                        | 384                            | 616.9                           | 730                              | 651                         |
| 60+       | 1666.1                         | 2683                            | 1881                             | 1867                        | 881.9                          | 211.5                           | 1054                             | 1119                        |
| ILA       | 388.4                          | 498.6                           | 6512                             | 7063                        | 163.2                          | 301.7                           | 2664                             | 2936                        |

The estimated age specific incidence rates in urban areas are comparable with the incidence rates reported from BCG trial. It is, however, evident that in both urban and rural areas, the number of deaths reported in the less than 15 years are less than the reported deaths. In fact, we tried to match the annual incidence rates in these two age groups as close as possible to the age specific incidence reported from the longitudinal studies reviewed. Even then the DISMOD estimated deaths remained much lower than the deaths estimated from registration schemes. Tuberculosis experts often argue that it is difficult to get samples of sputum from this group. Also, the proportion of extra-pulmonary forms of tuberculosis would be higher in this group which are not captured by the community based surveys.

The outputs from DISMOD were used as inputs to the worksheets to estimate the Years of Life Lost and Years Lived with Disability due to Tuberculosis.

#### DIABETES MELLITUS

Diabetes mellitus is a common endocrinal disease resulting in several complications. Our estimates are for Non-insulin dependent diabetes (NIDDM) which accounts for 80-90% of all diabetes world-wide. While Insulin dependent diabetes (IDM) is considered to be relatively rate in most developing countries the epidemiology of third form of diabetes, the malnutrition related diabetes mellitus is poorly understood. The WHO case definition of diabetes is based on biochemical criteria.

|                         | Case         | of Diabetes     | 3 <sup>1</sup> |           |  |  |
|-------------------------|--------------|-----------------|----------------|-----------|--|--|
| Nature of sample        | Glucose (m   | ng/dl)          |                |           |  |  |
|                         | Whole Blo    | bd              | Plasma         |           |  |  |
|                         | Venous       | Capillary       | Venous         | Capillary |  |  |
| Fasting                 | >12()        | >120            | >140           | >140      |  |  |
| 2 hr after glucose load | >18()        | >200            | >2()()         | >200      |  |  |
| ' WHO 1985; Te          | chnical Repo | rt Series No.72 | 27             |           |  |  |

#### ICD Codes:

Y

5

5

с С

3

J

Ċ

5

Ċ

C

5

C

с с

3

3

3

3

3

3

3

3

3

C

9.

C

6

00

0

3

3

2

0

3

The ICD 9 classifies the Diabetes Mellitus as adult onset type and juvenile onset type. The corresponding code for Diabetes ICD 9 is 250. The tenth revision introduced a new coding system which distinguishes between insulin dependent (E10), non insulin dependent (E11), malnutrition related diabetes (E12), other specified (E 13) and unspecified (E14) Diabetes. Gestational diabetes is recorded elsewhere. As per ICD norms if a mention of Diabetes is made in part I of death certificate, it should be considered as the underlying cause.

Natural History

The details of natural history of diabetes and its complications are presented in a tabular form in next page.

| Natural<br>History | Description                                                                                                                                                                                                          | Out come                                                                                      | Source of information                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Risk Factors       | Genetic, Environmental                                                                                                                                                                                               | Parental history<br>Diet (>fat),<br>Lifestyles ( <phy.activity)<br>Obesity</phy.activity)<br> | Migrant studies, Studies in low income urban areas                                                     |
| Incidence          | Between 30-69 yrs. there is a<br>straight line relationship of log<br>odds of NIDDM to age with a<br>slope of 0.066 year-1.<br>Low and high prevalence<br>populations varies only in<br>constant terms used in model | Age specific incidence<br>pattern                                                             | Review article of Paul<br>McKingue                                                                     |
| Prevalence         | Among adults prevalence rates<br>increased with age. Prevalence<br>was less among females                                                                                                                            | Age and sex specific prevalence rates                                                         | Community based surveys<br>undertaken in different parts<br>of India                                   |
| Remission          | Nil                                                                                                                                                                                                                  |                                                                                               |                                                                                                        |
| Treatment          | Percent receiving treatment                                                                                                                                                                                          | About 50% of the cases detected were known cases                                              | Hospital based studies                                                                                 |
| Complicatio<br>ns  | Specific                                                                                                                                                                                                             | >Incidence of blindness<br>>Incidence of nephropathy<br>>Diabetic foot                        | Follow-up studies, Hospital based studies                                                              |
|                    | Non specific .                                                                                                                                                                                                       | >Myocardial infarction<br>>Stroke                                                             | Follow-up studies, hospital based studies                                                              |
| Mortality          | Case fatality                                                                                                                                                                                                        | Age and sex specific case fatality rates                                                      | Estimating case fatality on<br>the basis of known<br>prevalence and reported<br>deaths due to diabetes |
|                    | RR                                                                                                                                                                                                                   | Influence of increased RR on<br>age and sex specific<br>mortality rates                       | Follow-up studies<br>undertaken at Fiji                                                                |

5 5 5

C

Э

Э

|                |         | Diabetes preval  | ence studies underta   | ken in India                  |                |  |
|----------------|---------|------------------|------------------------|-------------------------------|----------------|--|
| Author         | Year    | Place            | Population             | Screening                     | Prevalence (%) |  |
| Patel et al    | 1959    | Bombay           | 18243 volunteers       | Post prandial glycosuria      | 2.4            |  |
| Ganguly et al  | 1964    | Lucknow          | 1445 rural hh survey   | Post prandial glycosuria      | 2.3            |  |
| Ahuja et al    | 1966    | Delhi            | 1027 volunteers        | PP glycosuria and bl. glucose | 6.2            |  |
| Berry et al    | 1966    | Chandigarh       | 3846 urban hh survey   | PP glycosuria                 | 2.9            |  |
| Satynarayana   | 1966    | Hyderabad        | 21396 volunteers       | PP glycosuria                 | 4.1            |  |
| Dutta et al    | 1968    | Pondicherry      | 2694 urban hh survey   | PP glycosuria                 | 0.7            |  |
| Ahuja et al    | 19.72   | New Delhi        | 1639 urban hh survey   | Post glucose blood sugar      | 2.7            |  |
| Jayarao et al  | 1972    | Hyderabad        | 2006 rural hh survey   | Post prandial glycosuria      | 2.4            |  |
| ICMR           | 1972-75 | 6 urban centres  | 19077 hh survey        | Post glucose blood sugar      | 2.1            |  |
|                |         | 5 rural centres  | 15177 hh survey        | Post glucose blood sugar      | 1.5            |  |
| Tripathy et al | 1979    | Koraput          | 2296 tribal volunteers | Post glucose boood sugar      | 0.9            |  |
| Patel          | 1986    | Bhadran, Gujarat | 3374 rural h h survey  | Post prandial glycosuria      | 3.8            |  |
| Verma et al    | 1986    | Delhi            | 6878 hh survey         | Inquiry for known diabetes    | 3.1            |  |
| Rao et al      | 1987    | Eluru AP         | 3579 hh survey         | Inquiry for known diabetes    | 2.4            |  |
| Murthy et al   | 1984    | Tenali AP        | Urban                  |                               | 4.7            |  |
| Ramachandran   | 1992    | Madras           | Urban                  |                               | 8.2            |  |
| et al          |         |                  | Rural                  |                               | 2.4            |  |

#### Review of studies undertaken in India:

()

3

3

C

3

3

3

C

3

C

Ċ Ċ

J

C

C

C

J

3

C C

3

E

C

È

3

E

3

3

è.

0

3

C

3

0 0

3

3

3

17

3 .

Several studies have been undertaken in India to know the prevalence of diabetes. The criteria used to define a case of diabetes varied from verbal enquiry for known diabetes to WHO suggested case definition for diabetes. Hence, it is difficult to compare the prevalence rates reported by these studies.

The largest survey covering 34,194 persons above the age of 14 years was undertaken by the Indian Council of Medical Research (1972-75). The case definition used by the ICMR study is. those with blood glucose values more than 130 mg/dl in the capillary blood after oral administration of 50g of glucose. So far this is the largest survey undertaken in the country and considered to be representative. The other studies demonstrated increasing prevalence with age. Males were more frequently affected with a sex ratio of 1:0.6 or even less among females. The estimated average duration of disease is about 8.1 years<sup>17</sup>.

#### Estimation of prevalence and mortality due to diabetes:

#### Prevalence :

60

3

3

J

3

E.

C

1

1

D

E'

1

13

1

3

C'

Ċ

0

3

3

0

C

5

0

C

0

C' C

0

0

0

0

0

0

0

0

2

Survey undertaken by Jayarao et al in rural Hyderabad estimated a prevalence of 2.4% which is higher than the ICMR aggregated rural prevalence. Since Jaya rao's study is undertaken in AP and covered 2006 households we have considered it to be representative of rural AP. We have taken the prevalence reported by Jayarao's study as such for rural AP. Even though this is higher than the ICMR estimates for rural India, a recent study (Ramachandran et al) in rural Tamil . Nadu suggests that the prevalence in rural areas are around 2.4%. We have assumed that crude prevalence of diabetes among rural males above 14 yrs will be 2.4%. In case of females GBD estimates used the same prevalence as males. However, studies undertaken in India suggest that the prevalence of diabetes among females is lesser than males. Hence we have applied and adjustment factor of 0.75 on the estimated incidence of males get the corresponding values for the females.

Considering the reported higher prevalence in urban areas we have assumed that both incidence and prevalence in urban AP are higher than the rural areas. The ICMR survey suggested that prevalence of diabetes is 1.4 times higher in urban areas. By applying a factor of 1.4 to the reported prevalence of this study we have estimated the prevalence of diabetes in urban AP. This gave a prevalence of 3.4% which is slightly higher than the ICMR estimates of urban areas but closer to small scale studies undertaken in urban AP and Madras. We have assumed that urban males above 14 years will have a crude NIDDM prevalence of 3.4%. Considering reported lower prevalence among females an adjustment factor of 0.75 was applied for the estimated incidence among males to arrive at the corresponding rates for females.

#### Mortality:

We have taken the APBD estimated deaths in urban areas for males and females as such. The CSMR rates are closely comparable with the GBD India estimates. In case of rural areas we have noticed that in case of males in 60+ age group the SCD estimates gave a cause specific mortality rate of 4 per thousand which we felt is an over estimate. Hence, we have assumed that the CSMR in rural males above 60 Ys in rural areas would closer to that of urban areas. Since the incidence and prevalence in rural areas are lesser than urban areas this assumption gives higher

case fatality in rural areas which is quite plausible. For other age groups we have used the SCD estimated death numbers as such which are close to CSMR of urban areas.

#### Estimation of Incidence and Consistency Check:

The above estimates on prevalence, cause specific mortality and remission were used to estimate the incidence rates and duration of diabetes through DISMOD. Through an iterative process the incidence and case fatality rates were adjusted to achieve the estimated prevalence and reported deaths. The results of the outputs from DISMOD are presented in the table.

| Age group   | Annual Inci | dence rate/10 | 000           |                 | Annual prev | al prevalence rate/1000 |               |                 |  |
|-------------|-------------|---------------|---------------|-----------------|-------------|-------------------------|---------------|-----------------|--|
|             | Rural Male  | Printle Del   | Urban<br>Male | Urban<br>Female | Rural Male  | Rural<br>Female         | Urban<br>Male | Urban<br>Female |  |
| 15-44       | 0.38        | 0.26          | 0.71          | 0.54            | 5.47        | 3.77                    | 10.44         | 7.88            |  |
| 45-59       | 7.49        | 5.25          | 13.22         | 10.22           | 64.61       | 45.52                   | 118.43        | 92.16           |  |
| 60+         | 11.37       | 8.38          | 16.9          | 14.19           | 211.59      | 154.29                  | 375.14        | 300.25          |  |
| Crude rates | 1.84        | 1.39          | 2.53          | 2.14            | 24.11       | 18.48                   | 34.06         | 29.95           |  |

| Age group          | Annual Cau | se specific m   | ortality rate | /1000           | Annual cause specific deaths |                 |               |                 |
|--------------------|------------|-----------------|---------------|-----------------|------------------------------|-----------------|---------------|-----------------|
|                    | Rural Male | Rural<br>Female | Urban<br>Male | Urban<br>Female | Rural Male                   | Rural<br>Female | Urban<br>Male | Urban<br>Female |
| 15-44              | 0.02       | 0.01            | 0.02          | 0.01            | 187                          | 124             | 76            | 54              |
| 45-59              | 0.31       | 0.19            | 0.31          | 0.2             | 952                          | 588             | 308           | 193             |
| 6 <mark>0</mark> + | 1.84       | 1.41            | 1.8           | . 1.4           | 2863                         | 2374            | 683           | 661             |

#### Estimation of disability:

N. N.

3

3

5

Ċ

3

5

3

3

3

'D

E.

1

13

E

C

C C

3

C C

G

C

3

ed es esta

3

6, 6

-

3

3

The complications of diabetes could be specific affecting eyes, kidneys and feet. These complications include retinopathy and other changes in eye like cataract, diabetic nephropathy and neuropathic ulcer in the legs and feet leading to prolonged immobilisation and sometimes amputation. These complications do not occur in non diabetics. In addition, the non specific complications of diabetes include the conditions such as increased risk from stroke and ischemic heart disease. In hospital based studies undertaken in India , 72% of the hospitalised diabetics died due to vascular complications. Renal disease is an important cause of death<sup>18</sup>. The incidence of major complications due to diabetes increases exponentially with increasing duration of diabetes.

#### 1. Blindness:

2

ef.

- Jo

E.

E.

27

CF.

E.

-13

Č)

t's

C

C.

er d' d' d' d

er er er er er eu er el er

3

2

0

13

Follow-up study in Wisconsin USA showed that 4% of diabetic patients develop blindness<sup>19</sup>. Another study in UK had estimated the incidence of blindness in diabetics to be around 5/1000 person years<sup>20</sup>.

2. Renal Failure:

In a cohort study undertaken in Germany the cumulative risk of developing renal failure requiring transplant was 2% after 15 years of diabetes, 5% after 20 years of diabetes and 10% after approximately 25 years of diabetes<sup>21</sup>

3. Diabetic foot:

Development of neuropathic ulcers is one of the commonest complications of diabetes. These lesions require prolonged immobilisation and nursing care. In a study undertaken in elderly diabetic patients in UK the prevalence of foot ulcers was 3%. US national data for 1987 show that lower extremity amputations for non traumatic conditions is about 8 per 1000 diabetic individuals

4. Diabetes as a risk factor for other diseases:

Estimates of routine US data for diabetes and follow up study undertaken in Chile<sup>22</sup> suggest that diabetes is an important risk factor for many diseases.

| Diabetes as a risk factor |               |
|---------------------------|---------------|
| Disease / complication    | Relative Risk |
| Coronary heart disease    | 2-5           |
| Stroke                    | 2-3           |
| Tuberculosis              | 6             |
| Blindness                 | 20            |
| End Stage Renal disease   | - 25          |
| Amputation                | 40            |

The estimates of disability weights are based on all these factors. For the sake of comparability the same disability weights used for the GBD estimates have been used for APBD study also.

Moss SE et al; The incidence of vision loss in a diabetic population; Ophthalmology 1988 95: 1340-1348 20

Cohen DL et al: A Population based study of the incidence of complications associated with Type 2 diabetes in the elderly Diabetic Med 1991; 8 928-933 21

Diabetes drafting group. Prevalence of small vessel and large vessel disease in diabetic patients from 14 centres. The WHO multinational study of vascular disease in diabetics. Diabetolgia 1985; 28; 615-640

Olmos P et al. Tuberculosis and diabetes mellitus : a longitudinal retrospective study in a teaching hospital. Rev Med Chil 1989; 117:979-983